微晶
碲化镉光电
纹理(宇宙学)
材料科学
薄膜
电子背散射衍射
光电子学
极点图
微观结构
能量转换效率
光学
沉积(地质)
太阳能电池
粒度
复合材料
纳米技术
冶金
计算机科学
物理
人工智能
地质学
古生物学
沉积物
图像(数学)
作者
V. N. Kornienko,Ochai Oklobia,S.J.C. Irvine,Steve Jones,Amit Munshi,Walajabad Sampath,Ali Abbas,Kieran M. Curson,Stuart Robertson,Y. Y. Tse,K. Barth,Jake W. Bowers,Michael Walls
标识
DOI:10.1016/j.tsf.2024.140277
摘要
A range of microstructural changes occur during the deposition and activation of CdTe based thin film solar cells. In particular, the cadmium chloride (CdCl2) activation treatment results in wholesale recrystallisation which transforms the conversion efficiency of the solar cell. One of the noticeable effects is the change of preferred orientation of the CdTe absorber. Highly orientated [111] texture is observed in as deposited or under-treated CdTe based devices. Optimized activation results in a more randomized texture and the [111] preferred texture component is significantly weakened. In this paper we use Electron Backscatter Diffraction to characterise absorber cross-sections. The focus is on how randomization of the absorber texture reflects device performance. We have had access to a range of CdTe devices using a variety of deposition techniques. We have observed a clear pattern that shows that devices with a highly orientated [111] texture have poor efficiency. Devices with a randomized texture have much higher efficiency. Here we illustrate this empirical correlation using devices deposited by Metal Organic Chemical Vapour Deposition with a range of efficiencies from 13.1 % to 17 %. We have also included the analysis of an absorber from a 18.7 % high efficiency CdSeTe/CdTe device to show that texture is similarly important in these advanced devices. We have been able to quantify the effect of texture by using multiples of uniform density or (MUD) values from the inverse pole figures. MUD figures close to 1 correlate with highest efficiency. Although the random texture of the absorber microstructure is only one of several important process factors, it appears to be a necessary feature for highest efficiency CdTe-based polycrystalline solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI