A novel MRI-based diagnostic model for predicting placenta accreta spectrum

医学 逻辑回归 放射科 磁共振成像 血管性 单变量分析 胎盘植入 接收机工作特性 怀孕 胎盘 内科学 多元分析 胎儿 遗传学 生物
作者
Jianfeng Xia,Yong Hu,Zehe Huang,Chen Song,Lanbin Huang,Qizeng Ruan,Zhao Chen,Shicai Deng,Mengzhu Wang,Yu Z
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:109: 34-41 被引量:3
标识
DOI:10.1016/j.mri.2024.02.014
摘要

To develop and evaluate a diagnostic model based on MRI signs for predicting placenta accreta spectrum. A total of 155 pregnant women were included in this study, randomly divided into 104 cases in the training set and 51 cases in the validation set. There were 93 Non-PAS cases, and 62 cases in the PAS group. The training set included 62 Non-PAS cases and 42 PAS cases. Clinical factors and MRI signs were collected for univariate analysis. Then, binary logistic regression analysis was used to develop independent diagnostic models with clinical relevant risk factors or MRI signs, as well as those combining clinical risk factors and MRI signs. The ROC curve analysis was used to evaluate the diagnostic performance of each diagnostic model. Finally, the validation was performed with the validation set. In the training set, four clinical factors (gestity, parity, uterine surgery history, placental position) and 11 MRI features (T2-dark bands, placental bulge, T2 hypointense interface loss, myometrial thinning, bladder wall interruption, focal exophytic mass, abnormal placental bed vascularization, placental heterogeneity, asymmetric placental thickening/shape, placental ischemic infarction, abnormal intraplacental vascularity) were considered as risk factors for PAS. The AUC of the clinical diagnostic model, MRI diagnostic model, and clinical + MRI model of PAS were 0.779, 0.854, and 0.874, respectively. In the validation set, the AUC of the clinical diagnostic model, MRI diagnostic model, and clinical + MRI model of PAS were 0.655, 0.728, and 0.735, respectively. Diagnosis model based on MRI features in this study can well predict placenta accreta spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dandelion完成签到,获得积分10
2秒前
4秒前
打打应助过过过采纳,获得10
4秒前
haha9haha完成签到,获得积分10
7秒前
8秒前
科研通AI5应助goldNAN采纳,获得10
8秒前
Maisie完成签到 ,获得积分10
10秒前
科研通AI5应助伊斯塔战灵采纳,获得10
11秒前
高高白曼舞完成签到,获得积分10
12秒前
penghui完成签到,获得积分10
15秒前
haha9haha发布了新的文献求助10
16秒前
里里完成签到,获得积分10
16秒前
一条裸游的鱼完成签到,获得积分10
16秒前
18秒前
19秒前
22秒前
Chosen_1完成签到,获得积分10
24秒前
25秒前
26秒前
36秒前
momo123完成签到 ,获得积分10
36秒前
37秒前
37秒前
华仔应助断章采纳,获得10
38秒前
失眠的班发布了新的文献求助10
41秒前
Viv发布了新的文献求助10
41秒前
Koko完成签到,获得积分10
42秒前
hunajx发布了新的文献求助10
42秒前
46秒前
酷波er应助librahapper采纳,获得10
46秒前
Owen应助Koko采纳,获得10
46秒前
图图完成签到,获得积分10
47秒前
大胆笑翠完成签到,获得积分10
48秒前
西门迎天发布了新的文献求助50
52秒前
54秒前
断章发布了新的文献求助10
57秒前
zlx完成签到 ,获得积分10
1分钟前
努力发文不会累完成签到,获得积分10
1分钟前
1分钟前
兴奋芷完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315