Review and Analysis of RGBT Single Object Tracking Methods: A Fusion Perspective

计算机科学 人工智能 传感器融合 视频跟踪 跟踪(教育) 计算机视觉 特征(语言学) 透视图(图形) 机器学习 对象(语法) 心理学 教育学 语言学 哲学
作者
Zhihao Zhang,Jun Wang,Shengjie Li,Lei Jin,Hao Wu,Jian Zhao,Bo Zhang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (8): 1-27 被引量:1
标识
DOI:10.1145/3651308
摘要

Visual tracking is a fundamental task in computer vision with significant practical applications in various domains, including surveillance, security, robotics, and human-computer interaction. However, it may face limitations in visible light data, such as low-light environments, occlusion, and camouflage, which can significantly reduce its accuracy. To cope with these challenges, researchers have explored the potential of combining the visible and infrared modalities to improve tracking performance. By leveraging the complementary strengths of visible and infrared data, RGB-infrared fusion tracking has emerged as a promising approach to address these limitations and improve tracking accuracy in challenging scenarios. In this article, we present a review on RGB-infrared fusion tracking. Specifically, we categorize existing RGBT tracking methods into four categories based on their underlying architectures, feature representations, and fusion strategies, namely feature decoupling based method, feature selecting based method, collaborative graph tracking method, and traditional fusion method. Furthermore, we provide a critical analysis of their strengths, limitations, representative methods, and future research directions. To further demonstrate the advantages and disadvantages of these methods, we present a review of publicly available RGBT tracking datasets and analyze the main results on public datasets. Moreover, we discuss some limitations in RGBT tracking at present and provide some opportunities and future directions for RGBT visual tracking, such as dataset diversity, unsupervised and weakly supervised applications. In conclusion, our survey aims to serve as a useful resource for researchers and practitioners interested in the emerging field of RGBT tracking, and to promote further progress and innovation in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助30
1秒前
1秒前
1秒前
鸡米花完成签到,获得积分10
1秒前
1秒前
乐乐应助阿屁屁猪采纳,获得10
1秒前
Lucas应助yugto采纳,获得10
2秒前
gulugulu发布了新的文献求助10
3秒前
moon完成签到,获得积分10
3秒前
4秒前
LPPQBB应助LIU采纳,获得50
4秒前
烟雨醉巷完成签到 ,获得积分10
4秒前
小周同学完成签到 ,获得积分10
5秒前
5秒前
闪闪幼南完成签到,获得积分10
6秒前
2hi完成签到,获得积分10
6秒前
7秒前
浮荒发布了新的文献求助10
7秒前
文静新烟应助俭朴的乐巧采纳,获得20
8秒前
8秒前
18276995909发布了新的文献求助10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得30
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
575757应助科研通管家采纳,获得10
10秒前
领导范儿应助gulugulu采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344166
求助须知:如何正确求助?哪些是违规求助? 4479497
关于积分的说明 13943155
捐赠科研通 4376560
什么是DOI,文献DOI怎么找? 2404847
邀请新用户注册赠送积分活动 1397207
关于科研通互助平台的介绍 1369579