Modelling of performance parameters of phenolic base resins Non-Asbestos Organic (NAO) friction material in brake pad using machine learning algorithms

摩擦学 材料科学 多孔性 制动器 刹车片 摩擦学 测功机 支持向量机 材料性能 算法 机器学习 复合材料 机械工程 计算机科学 工程类 冶金
作者
Danishtah Quamar,Chiranjit Sarkar
出处
期刊:Tribology International [Elsevier]
卷期号:191: 109188-109188 被引量:6
标识
DOI:10.1016/j.triboint.2023.109188
摘要

Data-driven methods along with a machine learning approach play an important role in analyzing data to extract scientifically interesting patterns between tribological and material properties due to the varying composition of the friction material (FM). The effects of tribological test variables (speed, and deceleration), and material properties (density, water porosity, oil porosity, thermal conductivity, compressibility, hardness, and acetone extraction) on the friction of the friction material due to varying composition of the ingredients were investigated using data-driven methods. For the study using a data-driven approach, the experimental results are collected for the conventional brake for various friction materials tested over the brake inertia dynamometer. To predict the COF of the friction material, four different machine learning (ML) algorithms, including K Nearest Neighbors (KNN), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM), were applied to tribological experimental data of the friction material of various compositions. We showed through performance analysis that the ML models can accurately predict friction of friction material from data on the material and tribological test variables. It was clear from a comparison of model results that the Gradient Boosting regressor (GBR) performed better at COF prediction than other ML models. According to a further investigation of feature importance, acetone extraction, and deceleration have the most impact on forecasting the COF of composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助diaobk采纳,获得20
刚刚
1秒前
2秒前
科研通AI6应助kiki采纳,获得10
4秒前
xlj发布了新的文献求助10
4秒前
充电宝应助顺利的万宝路采纳,获得10
5秒前
Kate发布了新的文献求助10
5秒前
飘逸烨华完成签到,获得积分10
6秒前
online1881发布了新的文献求助10
8秒前
大力的问蕊完成签到,获得积分10
8秒前
Waris发布了新的文献求助10
9秒前
田様应助GG采纳,获得10
9秒前
kiki完成签到,获得积分10
11秒前
顺心书琴完成签到,获得积分10
11秒前
12秒前
cc发布了新的文献求助10
13秒前
Hello应助Messi采纳,获得10
13秒前
14秒前
嘿嘿完成签到,获得积分20
15秒前
15秒前
15秒前
16秒前
FashionBoy应助xlj采纳,获得10
16秒前
倩Q发布了新的文献求助10
17秒前
17秒前
www发布了新的文献求助10
17秒前
zzzjw发布了新的文献求助10
17秒前
ding应助鱼啵啵采纳,获得10
17秒前
大个应助三三采纳,获得10
18秒前
lynn221204发布了新的文献求助10
18秒前
18秒前
金桔儿发布了新的文献求助10
19秒前
19秒前
迪迦都红灯了完成签到 ,获得积分10
19秒前
20秒前
20秒前
Yangpc发布了新的文献求助10
20秒前
20秒前
科研通AI6应助Luffy采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538