铬
氧化还原
工作(物理)
储能
流量(数学)
材料科学
比例(比率)
工艺工程
能量(信号处理)
计算机科学
冶金
工程类
机械工程
数学
物理
统计
功率(物理)
几何学
量子力学
作者
Yingchun Niu,Ali Heydari,Wei Qiu,Chao Guo,Yinping Liu,Chunming Xu,Tianhang Zhou,Quan Xu
出处
期刊:Nanoscale
[Royal Society of Chemistry]
日期:2024-01-01
卷期号:16 (8): 3994-4003
被引量:6
摘要
Iron–chromium flow batteries (ICRFBs) are regarded as one of the most promising large-scale energy storage devices with broad application prospects in recent years. In this work, active learning is used to explore the most optimized cases considering the highest energy efficiency and capacity.
科研通智能强力驱动
Strongly Powered by AbleSci AI