Comparison of Methods for Biological Sequence Clustering

聚类分析 计算机科学 数据挖掘 水准点(测量) 序列(生物学) CURE数据聚类算法 相关聚类 人工智能 生物 地理 大地测量学 遗传学
作者
Ze‐Gang Wei,Xu Chen,Xiao-Dan Zhang,Hao Zhang,Xing-Guo Fan,Hongyan Gao,Fei Liu,Yu Qian
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 2874-2888 被引量:9
标识
DOI:10.1109/tcbb.2023.3253138
摘要

Recent advances in sequencing technology have considerably promoted genomics research by providing high-throughput sequencing economically. This great advancement has resulted in a huge amount of sequencing data. Clustering analysis is powerful to study and probe the large-scale sequence data. A number of available clustering methods have been developed in the last decade. Despite numerous comparison studies being published, we noticed that they have two main limitations: only traditional alignment-based clustering methods are compared and the evaluation metrics heavily rely on labeled sequence data. In this study, we present a comprehensive benchmark study for sequence clustering methods. Specifically, i) alignment-based clustering algorithms including classical (e.g., CD-HIT, UCLUST, VSEARCH) and recently proposed methods (e.g., MMseq2, Linclust, edClust) are assessed; ii) two alignment-free methods (e.g., LZW-Kernel and Mash) are included to compare with alignment-based methods; and iii) different evaluation measures based on the true labels (supervised metrics) and the input data itself (unsupervised metrics) are applied to quantify their clustering results. The aims of this study are to help biological analyzers in choosing one reasonable clustering algorithm for processing their collected sequences, and furthermore, motivate algorithm designers to develop more efficient sequence clustering approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小学森完成签到,获得积分20
刚刚
LIN发布了新的文献求助10
1秒前
qiu完成签到 ,获得积分10
1秒前
1秒前
珺涒完成签到,获得积分10
1秒前
水水应助舒心源智采纳,获得10
2秒前
better完成签到,获得积分10
2秒前
雪白沛春发布了新的文献求助10
2秒前
浊酒完成签到,获得积分20
2秒前
英姑应助creed采纳,获得10
2秒前
在水一方应助hail采纳,获得10
3秒前
3秒前
无心完成签到,获得积分10
3秒前
善学以致用应助鲤鱼毛巾采纳,获得30
3秒前
小周发布了新的文献求助10
3秒前
3秒前
4秒前
HL完成签到,获得积分10
4秒前
垃圾智造者完成签到,获得积分10
4秒前
5秒前
Avae完成签到,获得积分10
5秒前
white_out发布了新的文献求助10
5秒前
gqzsl完成签到,获得积分10
5秒前
5秒前
滕滕应助熬夜拜拜采纳,获得10
6秒前
程志强完成签到,获得积分10
6秒前
6秒前
科研通AI6应助黑大帅采纳,获得10
7秒前
星辰大海应助jin采纳,获得10
7秒前
yw完成签到,获得积分10
7秒前
YYY发布了新的文献求助10
8秒前
沉默清完成签到,获得积分10
8秒前
科研通AI6应助张鹏荣采纳,获得10
8秒前
9秒前
林珍发布了新的文献求助10
10秒前
ddddd发布了新的文献求助10
10秒前
10秒前
10秒前
abc完成签到 ,获得积分10
10秒前
珂珂完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402598
求助须知:如何正确求助?哪些是违规求助? 4521214
关于积分的说明 14084549
捐赠科研通 4435204
什么是DOI,文献DOI怎么找? 2434608
邀请新用户注册赠送积分活动 1426723
关于科研通互助平台的介绍 1405516