谷氨酸羧肽酶Ⅱ
前列腺癌
化学
癌症研究
肿瘤微环境
体内
细胞生物学
生物
医学
癌症
内科学
肿瘤细胞
生物技术
作者
Camila Maria Longo Machado,Magdalena Skubal,Katja Haedicke,Fábio Pittella Silva,Evan P. Stater,Thais L.A. de O. Silva,Érico T. Costa,Cibele Masotti,Andréia Hanada Otake,Luciana Nogueira de Sousa Andrade,Mara de Souza Junqueira,Hsiao‐Ting Hsu,Sudeep Das,Benedict Mc Larney,Edwin C. Pratt,Yevgeniy Romin,Ning Fan,Katia Manova‐Todorova,Martin G. Pomper,Jan Grimm
标识
DOI:10.1016/j.jconrel.2023.10.038
摘要
Cell membrane-derived particles (Mp) are rounded membrane-enclosed particles that are shed from tumor cells. Mp are formed from tumor membranes and are capable of tumor targeting and immunotherapeutic agents because they share membrane homology with parental cells; thus, they are under consideration as a drug delivery vehicle. Prostate-specific membrane antigen (PSMA), a transmembrane glycoprotein with enzymatic functionality, is highly expressed in Mp and extracellular vesicles (EV) from prostate cancer (PCa) with poor clinical prognosis. Although PSMA expression was previously shown in EV and Mp isolated from cell lines and from the blood of patients with high-grade PCa, no pathophysiological effects have been linked to PCa-derived Mp. Here, we compared Mp from PSMA-expressing (PSMA-Mp) and PSMA-non-expressing (WT-Mp) cells side by side in vitro and in vivo. PSMA-Mp can transfer PSMA and new phenotypic characteristics to the tumor microenvironment. The consequence of PSMA transfer to cells and increased secretion of vascular endothelial growth factor-A (VEGF-A), pro-angiogenic and pro-lymphangiogenic mediators, with increased 4E binding protein 1 (4EBP-1) phosphorylation.
科研通智能强力驱动
Strongly Powered by AbleSci AI