Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

材料科学 表面能 表面扩散 退火(玻璃) 能量最小化 应变能 原子扩散 化学物理 分子动力学 石墨烯 扩散 微晶 纳米技术 结晶学 热力学 物理化学 复合材料 冶金 计算化学 吸附 化学 有限元法 物理
作者
Jian Song,Qi Zhang,Songsong Yao,Kunming Yang,Houyu Ma,Jiamiao Ni,Boan Zhong,Yue Liu,Jian Wang,Tongxiang Fan
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:263: 119414-119414 被引量:4
标识
DOI:10.1016/j.actamat.2023.119414
摘要

Achieving atomically flat surface of metals has been shown can significantly enhance their oxidation resistance and advance their electronic-optical applications. However, surface energy minimization of polycrystalline metals during traditional heat treatments generally develops a large number of surface steps and facets that have low surface energy. Moreover, surface diffusion is further limited by three-dimensional Ehrlich-Schwoebel barriers due to the formation of steps and facets. Therefore, formation of atomically flat surface is both energetically unfavorable and kinetically unstable. Here, we covered graphene (Gr) on Copper (Cu) surface and performed systematic and statistical analysis of microstructures in three types of graphene-Cu (Gr/Cu) interfaces: annealed Cu, transferred and high-temperature deposited Gr/Cu interfaces. We found that mono-atomic steps formed at high-temperature deposited Gr/Cu interface, in comparison with multi-atomic steps at annealed Cu and transferred Gr/Cu interfaces. Molecular statics/dynamics simulations and thermodynamic analysis suggest that formation of mono-atomic steps can be ascribed to minimizing strain energy of Gr and high-temperature assisted surface diffusion. When a step height (h) is smaller than five atomic planes (h < 5), strain energy minimization of Gr will prevent step bunching, accelerating formation of atomically flat surface. When h ≥ 5, strain energy minimization of Gr will trigger step-bunching instability, decomposing large steps and thus facilitating surface diffusion to develop atomically flat surface. The present results not only enrich understanding of formation mechanism of Gr/Cu interface, but also suggest a potential strategy to achieve atomically flat surfaces by high-temperature annealing graphene-covered metals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白蒲桃发布了新的文献求助10
1秒前
liuhaha发布了新的文献求助30
1秒前
2秒前
共享精神应助高冷采纳,获得10
3秒前
胡帅完成签到,获得积分20
3秒前
谢涛发布了新的文献求助10
3秒前
飞白完成签到,获得积分20
5秒前
5秒前
5秒前
星空办公室完成签到,获得积分10
6秒前
6秒前
7秒前
sytbb发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
飞白发布了新的文献求助10
9秒前
彳亍完成签到,获得积分10
9秒前
正道魁首发布了新的文献求助10
10秒前
zou发布了新的文献求助10
11秒前
彳亍发布了新的文献求助10
12秒前
完美世界应助朴素雪兰采纳,获得10
12秒前
小邱同学完成签到 ,获得积分10
14秒前
volunteer发布了新的文献求助10
14秒前
veysa发布了新的文献求助10
14秒前
soyorin发布了新的文献求助10
15秒前
科研通AI5应助白蒲桃采纳,获得10
17秒前
17秒前
17秒前
17秒前
香蕉觅云应助吹梦到西洲采纳,获得10
19秒前
慕青应助零零采纳,获得10
20秒前
20秒前
nono完成签到,获得积分10
20秒前
20秒前
无敌霸王花应助虞不见王采纳,获得20
20秒前
今后应助sytbb采纳,获得10
22秒前
22秒前
littlejin完成签到 ,获得积分10
22秒前
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133459
求助须知:如何正确求助?哪些是违规求助? 4334575
关于积分的说明 13504156
捐赠科研通 4171584
什么是DOI,文献DOI怎么找? 2287247
邀请新用户注册赠送积分活动 1288151
关于科研通互助平台的介绍 1228995