Adoption of new strategy for molecularly imprinted polymer based in-tube solid phase microextraction to improve specific recognition performance and extraction efficiency

固相微萃取 色谱法 萃取(化学) 检出限 分子印迹聚合物 材料科学 固相萃取 磁性纳米粒子 化学 纳米技术 质谱法 纳米颗粒 选择性 气相色谱-质谱法 生物化学 催化作用
作者
Xiaochong Song,Xiaojing Li,Jingjuan Wang,Xiaojia Huang
出处
期刊:Microchemical Journal [Elsevier]
卷期号:194: 109224-109224 被引量:18
标识
DOI:10.1016/j.microc.2023.109224
摘要

In-tube solid phase microextraction (IT-SPME) utilizing molecularly imprinted polymers (MIPs) as extraction phase has received wide attention due to various merits. However, low extraction efficiency and unsatisfactory recognition performance have limited its extensive application. To circumvent the limitations, a new strategy that implementation of magnetic fields during extraction stage was introduced to improve the extraction efficiency and recognition performance of MIPs-based IT-SPME. Firstly, using 2,4-dinitroaniline (2,4-DNA) as model template, a MIP mingled with magnetic nanoparticles (Fe3O4) was in-situ prepared in a capillary and employed as the microextraction column of IT-SPME. In the second step, a magnetic coil was wrapped the as-prepared MIP-based microextraction column so as to produce variable magnetic fields in extraction step. Results revealed that the application of magnetic field during the adsorption step improved the specific extraction performance towards template. The extraction efficiency and imprinting factor towards 2,4-DNA increased from 58% and 2.5 to 81% and 3.1, respectively. Practicality of the introduced magnetism-assisted IT-SPME technique based on MIP was demonstrated by on-line hyphenating with HPLC/DAD to quantify trace 2,4-DNA in a variety of environmental waters. High sensitivity (limit of detection was 0.060 μg/L), good precision (RSDs were below 10%) and satisfactory recoveries (82.1–111%) were obtained. Furthermore, the possible selective extraction mechanism under magnetic fields was deduced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
含BUFF完成签到,获得积分10
3秒前
can发布了新的文献求助10
4秒前
yb完成签到,获得积分10
5秒前
7秒前
ddd完成签到 ,获得积分10
8秒前
8秒前
ding应助老实新筠采纳,获得30
8秒前
持卿应助恰好采纳,获得10
8秒前
Cu完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
帅气代云完成签到 ,获得积分10
11秒前
buno应助慢羊羊采纳,获得10
11秒前
12秒前
友好的亦巧发布了新的文献求助100
13秒前
Jeffery发布了新的文献求助30
13秒前
诚心的雁完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
舒适清涟完成签到,获得积分10
16秒前
16秒前
小吉完成签到,获得积分10
18秒前
文献狗发布了新的文献求助10
18秒前
18秒前
Jeffery完成签到,获得积分10
20秒前
21秒前
wuya发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
22秒前
24秒前
淡淡紫蓝发布了新的文献求助30
25秒前
原子发布了新的文献求助10
25秒前
2Y_DADA完成签到,获得积分10
28秒前
三百一十四完成签到 ,获得积分10
28秒前
思源应助lj采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604172
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857380
捐赠科研通 4697016
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851