Optimal Policies for Dynamic Pricing and Inventory Control with Nonparametric Censored Demands

后悔 上下界 非参数统计 估计员 数学优化 数学 计算机科学 计量经济学 数理经济学 统计 数学分析
作者
Boxiao Chen,Yining Wang,Yuan Zhou
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (5): 3362-3380 被引量:21
标识
DOI:10.1287/mnsc.2023.4859
摘要

We study the classic model of joint pricing and inventory control with lost sales over T consecutive review periods. The firm does not know the demand distribution a priori and needs to learn it from historical censored demand data. We develop nonparametric online learning algorithms that converge to the clairvoyant optimal policy at the fastest possible speed. The fundamental challenges rely on that neither zeroth-order nor first-order feedbacks are accessible to the firm and reward at any single price is not observable due to demand censoring. We propose a novel inversion method based on empirical measures to consistently estimate the difference of the instantaneous reward functions at two prices, directly tackling the fundamental challenge brought by censored demands. Based on this technical innovation, we design bisection and trisection search methods that attain an [Formula: see text] regret for the case with concave reward functions, and we design an active tournament elimination method that attains [Formula: see text] regret when the reward functions are nonconcave. We complement the [Formula: see text] regret upper bound with a matching [Formula: see text] regret lower bound. The lower bound is established by a novel information-theoretical argument based on generalized squared Hellinger distance, which is significantly different from conventional arguments that are based on Kullback-Leibler divergence. Both the upper bound technique based on the “difference estimator” and the lower bound technique based on generalized Hellinger distance are new in the literature, and can be potentially applied to solve other inventory or censored demand type problems that involve learning. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4859 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shanshan发布了新的文献求助10
6秒前
研友_xnE65Z完成签到 ,获得积分10
8秒前
bzdjsmw完成签到 ,获得积分10
13秒前
无情的君浩应助shanshan采纳,获得30
15秒前
蓝意完成签到,获得积分0
21秒前
shanshan完成签到,获得积分10
24秒前
56秒前
崩溃完成签到,获得积分10
58秒前
阿秋完成签到,获得积分10
1分钟前
1分钟前
gmc完成签到 ,获得积分10
1分钟前
鲸落完成签到 ,获得积分10
1分钟前
小强完成签到 ,获得积分10
1分钟前
erfan发布了新的文献求助10
1分钟前
chenbin完成签到,获得积分10
1分钟前
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
sheetung完成签到,获得积分10
1分钟前
满意的伊发布了新的文献求助10
1分钟前
千玺的小粉丝儿完成签到,获得积分10
1分钟前
李彦完成签到,获得积分10
1分钟前
啦啦啦啦完成签到 ,获得积分10
1分钟前
人文完成签到 ,获得积分10
2分钟前
TOUHOUU完成签到 ,获得积分10
2分钟前
cdercder应助满意的伊采纳,获得10
2分钟前
万能图书馆应助满意的伊采纳,获得10
2分钟前
独孤完成签到 ,获得积分10
2分钟前
周小鱼完成签到,获得积分10
2分钟前
乐观的星月完成签到 ,获得积分10
2分钟前
2分钟前
weihe完成签到 ,获得积分10
2分钟前
2分钟前
橘子海完成签到 ,获得积分10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
sobergod完成签到 ,获得积分10
2分钟前
2分钟前
王王完成签到 ,获得积分10
3分钟前
TaoJ应助guojingjing采纳,获得10
3分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825038
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445271
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698238
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907