材料科学
锭
共晶体系
坩埚(大地测量学)
冶金
感应炉
真空感应熔炼
原位
复合材料
金属
微观结构
合金
化学
物理
计算化学
气象学
作者
Anton Perminov,Peer Eric Günther,Mariia Ilatovskaia,Xingwen Wei,Olena Volkova
标识
DOI:10.1002/adem.202300627
摘要
Fe– x TiC in situ metal matrix composites (MMCs) are fabricated utilizing a cold crucible inductive melting (CCIM) technique with varying TiC amounts (2, 3.5, and 5 wt%). Steel blocks and pure Ti plates are remelted in a water‐cooled copper crucible. The subsequent solidification of [Ti]‐ and [C]‐rich melt yields TiC reinforcement particles in an ingot. The holding time varies between 5 and 30 min, whereas the holding temperature alters depending on the amount of TiC, ranging from 1380 to 1620 °C for Fe‐5TiC and Fe‐2TiC, respectively. Alloying efficiency for TiC‐forming elements is estimated for all fabricated Fe– x TiC ingots by comparing [Ti] and [C] target values with measured ones. The lower TiC amounts and shorter holding times result in decreased [Ti] and [C] losses. SEM analysis of three cross‐section samples representing different TiC amounts reveals two distinct morphologies of TiC in situ reinforcements: primary blocky/cubic and eutectic plate‐like precipitates. The blocky precipitates appear slightly finer with a decrease in TiC amount (4.4 ± 1.2 μm for Fe‐5TiC and 3.8 ± 0.7 μm for Fe‐2TiC), whereas the length of plate‐like precipitates noticeably decreases in the samples with lower TiC amounts (11.0 ± 7.0 μm for Fe‐5TiC and 6.8 ± 3.6 μm for Fe‐2TiC).
科研通智能强力驱动
Strongly Powered by AbleSci AI