材料科学
电解质
锂(药物)
快离子导体
粒子(生态学)
微观结构
电池(电)
粒径
荷电状态
锂离子电池
复合数
离子
复合材料
化学工程
纳米技术
电极
热力学
物理化学
功率(物理)
内分泌学
工程类
化学
地质学
物理
海洋学
医学
量子力学
作者
Eva Schlautmann,Alexander Weiß,Oliver Maus,Lukas Ketter,Moumita Rana,Sebastian Puls,Vera Nickel,Christine Gabbey,Christoph Hartnig,Anja Bielefeld,Wolfgang G. Zeier
标识
DOI:10.1002/aenm.202302309
摘要
Abstract All solid‐state batteries are promising, as they are expected to offer increased energy density over conventional lithium‐ion batteries. Here, the microstructure of solid composite electrodes plays a crucial role in determining the characteristics of ionic and electronic pathways. Microstructural aspects that impede charge carrier transport can, for instance, be voids resulting from a general mismatch of particle sizes. Solid electrolyte materials with smaller particle size distribution represent a promising approach to limit the formation of voids and to match the smaller active materials. Therefore, a systematic investigation on the influence of the solid electrolyte particle size on the microstructural properties, charge carrier transport, and rate performance is essential. This study provides an understanding of the influence of the particle sizes of Li 6 PS 5 Cl on the charge carrier transport properties and their effect on the performance of solid‐state batteries. In conclusion, smaller Li 6 PS 5 Cl particles optimize the charge transport properties and offer a higher interface area with the active material, resulting in improved solid‐state battery performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI