Hypergraph-Based Multi-Modal Representation for Open-Set 3D Object Retrieval

嵌入 计算机科学 对象(语法) 超图 人工智能 不变(物理) 模式识别(心理学) 集合(抽象数据类型) 代表(政治) 情态动词 视觉对象识别的认知神经科学 理论计算机科学 数学 程序设计语言 离散数学 高分子化学 法学 政治学 政治 化学 数学物理
作者
Yifan Feng,Shuyi Ji,Yu-Shen Liu,Shaoyi Du,Qionghai Dai,Yue Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 2206-2223 被引量:10
标识
DOI:10.1109/tpami.2023.3332768
摘要

The traditional 3D object retrieval (3DOR) task is under the close-set setting, which assumes the categories of objects in the retrieval stage are all seen in the training stage. Existing methods under this setting may tend to only lazily discriminate their categories, while not learning a generalized 3D object embedding. Under such circumstances, it is still a challenging and open problem in real-world applications due to the existence of various unseen categories. In this paper, we first introduce the open-set 3DOR task to expand the applications of the traditional 3DOR task. Then, we propose the Hypergraph-Based Multi-Modal Representation (HGM $^{2}$ R) framework to learn 3D object embeddings from multi-modal representations under the open-set setting. The proposed framework is composed of two modules, i.e., the Multi-Modal 3D Object Embedding (MM3DOE) module and the Structure-Aware and Invariant Knowledge Learning (SAIKL) module. By utilizing the collaborative information of modalities derived from the same 3D object, the MM3DOE module is able to overcome the distinction across different modality representations and generate unified 3D object embeddings. Then, the SAIKL module utilizes the constructed hypergraph structure to model the high-order correlation among 3D objects from both seen and unseen categories. The SAIKL module also includes a memory bank that stores typical representations of 3D objects. By aligning with those memory anchors in the memory bank, the aligned embeddings can integrate the invariant knowledge to exhibit a powerful generalized capacity toward unseen categories. We formally prove that hypergraph modeling has better representative capability on data correlation than graph modeling. We generate four multi-modal datasets for the open-set 3DOR task, i.e., OS-ESB-core, OS-NTU-core, OS-MN40-core, and OS-ABO-core, in which each 3D object contains three modality representations: multi-view, point clouds, and voxel. Experiments on these four datasets show that the proposed method can significantly outperform existing methods. In particular, the proposed method outperforms the state-of-the-art by 12.12%/12.88% in terms of mAP on the OS-MN40-core/OS-ABO-core dataset, respectively. Results and visualizations demonstrate that the proposed method can effectively extract the generalized 3D object embeddings on the open-set 3DOR task and achieve satisfactory performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡定的依丝完成签到,获得积分10
2秒前
无敌小旋风完成签到,获得积分10
2秒前
agui完成签到 ,获得积分10
3秒前
木槿完成签到,获得积分10
3秒前
今天晚上早点睡完成签到 ,获得积分10
4秒前
Louis23发布了新的文献求助10
5秒前
领导范儿应助liyukun采纳,获得10
6秒前
7秒前
研友_祝鬼神完成签到,获得积分10
8秒前
斯文败类应助英勇绮南采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
月月鸟完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
自信机器猫完成签到 ,获得积分20
13秒前
13秒前
14秒前
LockheedChengdu完成签到,获得积分10
15秒前
直率向真完成签到,获得积分10
16秒前
豆4799完成签到,获得积分10
16秒前
17秒前
天天快乐应助希希采纳,获得10
18秒前
量子星尘发布了新的文献求助10
20秒前
自由的海完成签到,获得积分20
20秒前
20秒前
111发布了新的文献求助10
21秒前
21秒前
开朗的蚂蚁完成签到,获得积分10
21秒前
AAAA发布了新的文献求助10
22秒前
afrex完成签到,获得积分10
23秒前
从容谷菱完成签到 ,获得积分10
25秒前
酷波er应助Jiashuai采纳,获得10
25秒前
自由的海发布了新的文献求助10
25秒前
皮皮完成签到 ,获得积分10
26秒前
annie发布了新的文献求助10
26秒前
29秒前
31秒前
天天快乐应助自由的海采纳,获得10
31秒前
32秒前
天天快乐应助AAAA采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767292
求助须知:如何正确求助?哪些是违规求助? 5569266
关于积分的说明 15414929
捐赠科研通 4901240
什么是DOI,文献DOI怎么找? 2636981
邀请新用户注册赠送积分活动 1585127
关于科研通互助平台的介绍 1540330