Prediction of subsolid pulmonary nodule growth rate using radiomics

列线图 无线电技术 接收机工作特性 医学 射线照相术 放射科 结核(地质) 计算机断层摄影术 曲线下面积 核医学 内科学 古生物学 生物
作者
Zong Lin Jing,Xuan Zhuang,Ying Sun,De Chun Li,Liang Jin,Pan Gao,Cheng Li,Ming Li
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:23 (1) 被引量:3
标识
DOI:10.1186/s12880-023-01143-x
摘要

Abstract Background Pulmonary nodule growth rate assessment is critical in the management of subsolid pulmonary nodules (SSNs) during clinical follow-up. The present study aimed to develop a model to predict the growth rate of SSNs. Methods A total of 273 growing SSNs with clinical information and 857 computed tomography (CT) scans were retrospectively analyzed. The images were randomly divided into training and validation sets. All images were categorized into fast-growth (volume doubling time (VDT) ≤ 400 days) and slow-growth (VDT > 400 days) groups. Models for predicting the growth rate of SSNs were developed using radiomics and clinical features. The models’ performance was evaluated using the area under the curve (AUC) values for the receiver operating characteristic curve. Results The fast- and slow-growth groups included 108 and 749 scans, respectively, and 10 radiomics features and three radiographic features (nodule density, presence of spiculation, and presence of vascular changes) were selected to predict the growth rate of SSNs. The nomogram integrating radiomics and radiographic features (AUC = 0.928 and AUC = 0.905, respectively) performed better than the radiographic (AUC = 0.668 and AUC = 0.689, respectively) and radiomics (AUC = 0.888 and AUC = 0.816, respectively) models alone in both the training and validation sets. Conclusion The nomogram model developed by combining radiomics with radiographic features can predict the growth rate of SSNs more accurately than traditional radiographic models. It can also optimize clinical treatment decisions for patients with SSNs and improve their long-term management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助高金龙采纳,获得10
刚刚
情怀应助高金龙采纳,获得10
刚刚
彭于晏应助高金龙采纳,获得10
刚刚
xmjy完成签到,获得积分20
刚刚
快乐的蓝发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
诸葛带你做分析_yorfir完成签到,获得积分0
1秒前
hangover完成签到 ,获得积分10
2秒前
苏帅发布了新的文献求助10
3秒前
大渣饼完成签到 ,获得积分10
4秒前
wyr发布了新的文献求助10
5秒前
加缪应助Jane采纳,获得10
5秒前
6秒前
勤恳的素阴完成签到 ,获得积分20
6秒前
LJJZZX发布了新的文献求助10
6秒前
6秒前
自然的剑封完成签到,获得积分10
7秒前
wangzheng发布了新的文献求助10
8秒前
春K应助苏帅采纳,获得20
8秒前
无花果应助大意的靳采纳,获得10
8秒前
9秒前
完美世界应助Zev采纳,获得10
10秒前
ll发布了新的文献求助10
11秒前
第七个星球完成签到,获得积分10
11秒前
鼓励男孩完成签到,获得积分10
13秒前
科研通AI5应助DKH采纳,获得10
13秒前
zzz完成签到,获得积分10
14秒前
完美世界应助cloud采纳,获得10
15秒前
16秒前
17秒前
快乐的蓝完成签到,获得积分10
17秒前
秣旎发布了新的文献求助10
22秒前
CipherSage应助科研通管家采纳,获得10
23秒前
leaolf应助科研通管家采纳,获得20
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得30
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4722352
求助须知:如何正确求助?哪些是违规求助? 4081828
关于积分的说明 12622898
捐赠科研通 3787377
什么是DOI,文献DOI怎么找? 2091656
邀请新用户注册赠送积分活动 1117701
科研通“疑难数据库(出版商)”最低求助积分说明 994538