Privacy-preserving trust management method based on blockchain for cross-domain industrial IoT

计算机科学 信任管理(信息系统) 块链 计算机安全 背景(考古学) 领域(数学分析) 领域(数学) 过程(计算) 协议(科学) 任务(项目管理) 工业互联网 激励 信息泄露 物联网 系统工程 医学 数学分析 古生物学 替代医学 数学 病理 纯数学 工程类 经济 生物 微观经济学 操作系统
作者
Xu Wu,Yang Liu,Jie Tian,Yuanpeng Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111166-111166 被引量:23
标识
DOI:10.1016/j.knosys.2023.111166
摘要

The Industrial Internet of Things (IIOT) contains many devices from different autonomous domains (e.g., factories), which need to cooperate to complete complex manufacturing process. Devices from different domains collaborate with each other, which greatly raises trust concerns about device-to-device interactions. Existing trust management approaches may result in the risk of privacy leakage and low accuracy of trust evaluation. Thus, trust issues during interaction remain unsolved but imperative. In this paper, we propose a blockchain-based privacy-preserving trust management architecture PPTMA. Specifically, PPTMA adopts federated learning to train a task-specific trust model for different collaborative task. Our work is the first attempt to research the relationship between the weight calculation of trust metric and the change of context in the field of trust management. To preserve the privacy of devices, differential privacy (DP) is exploited during the trust evaluation process. In addition, a game theory-based incentive mechanism is proposed to encourage the IIOT device for actively and honestly submitting the trust data into the blockchain as so to promote the accuracy of trust computing. Finally, we also design a parallel consensus protocol (OPBFT) which realizes an assembly line to speed up the efficiency of the consensus process. The idea of consensus assembly line firstly proposed by us brings new opportunities for improving the consensus efficiency. Extensive experiments have been conducted to show the effectiveness and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到 ,获得积分10
刚刚
科研通AI6应助丁莞采纳,获得30
刚刚
1秒前
3秒前
浮游应助YJ采纳,获得10
3秒前
ding应助Baneyhua采纳,获得10
5秒前
5秒前
lizhen完成签到,获得积分10
6秒前
6秒前
yancy完成签到,获得积分10
8秒前
李嘉图完成签到,获得积分10
10秒前
无所不能的虫虫完成签到,获得积分10
10秒前
科研通AI6应助lizhen采纳,获得10
11秒前
11秒前
上官若男应助低温少年采纳,获得10
11秒前
科研通AI2S应助坚强一刀采纳,获得30
12秒前
13秒前
醒醒完成签到,获得积分10
13秒前
YCH完成签到,获得积分10
13秒前
科研通AI6应助1234567采纳,获得10
13秒前
15秒前
焱冰完成签到,获得积分10
15秒前
Ikkyu完成签到 ,获得积分10
16秒前
立冬发布了新的文献求助10
16秒前
17秒前
苗雅宁完成签到,获得积分10
17秒前
素嘟完成签到 ,获得积分10
18秒前
toto完成签到 ,获得积分10
18秒前
喜悦的向珊完成签到,获得积分20
18秒前
18秒前
19秒前
丘比特应助杨娜采纳,获得10
19秒前
20秒前
追莲永不言弃完成签到 ,获得积分10
20秒前
低温少年完成签到,获得积分10
20秒前
豆哆完成签到,获得积分10
21秒前
毛新泽完成签到,获得积分10
22秒前
低温少年发布了新的文献求助10
23秒前
23秒前
babyshelling完成签到,获得积分10
23秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381280
求助须知:如何正确求助?哪些是违规求助? 4504712
关于积分的说明 14018995
捐赠科研通 4413867
什么是DOI,文献DOI怎么找? 2424475
邀请新用户注册赠送积分活动 1417481
关于科研通互助平台的介绍 1395246