Optimizing ZnO–Quantum Dot Interface with Thiol as Ligand Modification for High‐Performance Quantum Dot Light‐Emitting Diodes

量子点 材料科学 工程物理 纳米技术 工程类
作者
Siqi Jia,Menglei Hu,Mi Gu,Jingrui Ma,Depeng Li,Guohong Xiang,Pai Liu,Kai Wang,Peyman Servati,Wei Kun Ge,Xiao Wei Sun
出处
期刊:Small [Wiley]
卷期号:20 (13)
标识
DOI:10.1002/smll.202307298
摘要

SmallEarly View 2307298 Research Article Optimizing ZnO–Quantum Dot Interface with Thiol as Ligand Modification for High-Performance Quantum Dot Light-Emitting Diodes Siqi Jia, Siqi Jia orcid.org/0000-0001-6439-457X Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 China Institute of Advanced Displays and Imaging, Henan Academy of Sciences, Zhengzhou, 450046 China Peng Cheng Laboratory, Shenzhen, 518038 ChinaSearch for more papers by this authorMenglei Hu, Menglei Hu orcid.org/0000-0001-9183-4382 Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 China Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 CanadaSearch for more papers by this authorMi Gu, Mi Gu Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorJingrui Ma, Jingrui Ma Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorDepeng Li, Depeng Li Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorGuohong Xiang, Guohong Xiang Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorPai Liu, Pai Liu Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 China Shenzhen Key Laboratory of Deep Subwavelength Scale Photonics, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorKai Wang, Kai Wang Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorPeyman Servati, Peyman Servati Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 CanadaSearch for more papers by this authorWei Kun Ge, Wei Kun Ge Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorXiao Wei Sun, Corresponding Author Xiao Wei Sun [email protected] orcid.org/0000-0002-2840-1880 Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 China E-mail: [email protected]Search for more papers by this author Siqi Jia, Siqi Jia orcid.org/0000-0001-6439-457X Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 China Institute of Advanced Displays and Imaging, Henan Academy of Sciences, Zhengzhou, 450046 China Peng Cheng Laboratory, Shenzhen, 518038 ChinaSearch for more papers by this authorMenglei Hu, Menglei Hu orcid.org/0000-0001-9183-4382 Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 China Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 CanadaSearch for more papers by this authorMi Gu, Mi Gu Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorJingrui Ma, Jingrui Ma Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorDepeng Li, Depeng Li Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorGuohong Xiang, Guohong Xiang Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorPai Liu, Pai Liu Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 China Shenzhen Key Laboratory of Deep Subwavelength Scale Photonics, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorKai Wang, Kai Wang Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorPeyman Servati, Peyman Servati Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 CanadaSearch for more papers by this authorWei Kun Ge, Wei Kun Ge Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 ChinaSearch for more papers by this authorXiao Wei Sun, Corresponding Author Xiao Wei Sun [email protected] orcid.org/0000-0002-2840-1880 Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 China E-mail: [email protected]Search for more papers by this author First published: 16 November 2023 https://doi.org/10.1002/smll.202307298Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract As the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO. Based on the simulations, thiol ligands (specifically 2-hydroxy-1-ethanethiol) to modify the ZnO nanocrystals are adopted. This modification alleviates the excess electrons without causing any additional issues in the charge injection in QLEDs. This modification strategy proves to be effective in improving the performance of red-emitting QLEDs, achieving an external quantum efficiency of over 23% and a remarkably long lifetime T95 of >12 000 h at 1000 cd m−2. Importantly, the relationship between ZnO layers with different electronic properties and their effect on the adjacent QDs through a single QD measurement is investigated. These findings show that the ZnO surface defects and electronic properties can significantly impact the device performance, highlighting the importance of optimizing the ZnO–QD interface, and showcasing a promising ligand strategy for the development of highly efficient QLEDs. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available in the supplementary material of this article. Supporting Information Filename Description smll202307298-sup-0001-SuppMat.pdf699.8 KB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1M. Liu, N. Yazdani, M. Yarema, M. Jansen, V. Wood, E. H. Sargent, Nat. Electron. 2021, 4, 548. 10.1038/s41928-021-00632-7 Web of Science®Google Scholar 2F. P. García de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, E. H. Sargent, Science 2021, 373, eaaz8541. 10.1126/science.aaz8541 CASPubMedWeb of Science®Google Scholar 3S. Jia, H. Tang, J. Ma, S. Ding, X. Qu, B. Xu, Z. Wu, G. Li, P. Liu, K. Wang, X. W. Sun, Adv. Opt. Mater. 2021, 9, 2101069. 10.1002/adom.202101069 CASWeb of Science®Google Scholar 4M. A. Triana, E.-L. Hsiang, C. Zhang, Y. Dong, S.-T. Wu, ACS Energy Lett. 2022, 7, 1001. 10.1021/acsenergylett.1c02745 CASWeb of Science®Google Scholar 5C. R. Kagan, E. Lifshitz, E. H. Sargent, D. V. Talapin, Science 2016, 353(6302), aac5523. Google Scholar 6Z. Yang, M. Gao, W. Wu, X. Yang, X. W. Sun, J. Zhang, H.-C. Wang, R.-S. Liu, C.-Y. Han, H. Yang, W. Li, Mater. Today 2019, 24, 69. 10.1016/j.mattod.2018.09.002 CASGoogle Scholar 7L. Qian, Y. Zheng, J. Xue, P. H. Holloway, Nat. Photonics 2011, 5, 543. 10.1038/nphoton.2011.171 CASWeb of Science®Google Scholar 8S.-Y. Yoon, Y.-J. Lee, H. Yang, D.-Y. Jo, H.-M. Kim, Y. Kim, S. M. Park, S. Park, H. Yang, ACS Energy Lett. 2022, 7, 2247. 10.1021/acsenergylett.2c01065 CASWeb of Science®Google Scholar 9K. Noh, M. Kim, S.-H. Lee, H.-S. Yun, T.-H. Lim, Y. Choi, K.-J. Kim, Y. Jiang, K. Beom, M. Kim, Y.-G. Kim, P. Lee, N. Oh, B. H. Kim, C. Shin, H. H. Lee, T.-S. Yoon, M. Shim, J. Lim, K.-B. Kim, S.-Y. Cho, Curr. Appl. Phys. 2019, 19, 998. 10.1016/j.cap.2019.05.016 Web of Science®Google Scholar 10N. A. Jayah, H. Yahaya, M. R. Mahmood, T. Terasako, K. Yasui, A. M. Hashim, Nanoscale Res. Lett. 2015, 10, 7. 10.1186/s11671-014-0715-0 PubMedWeb of Science®Google Scholar 11V. H. Nguyen, D. Bellet, B. Masenelli, D. Muñoz-Rojas, ACS Appl. Nano Mater. 2018, 1, 6922. 10.1021/acsanm.8b01745 CASWeb of Science®Google Scholar 12A. L. Roest, J. J. Kelly, D. Vanmaekelbergh, E. A. Meulenkamp, Phys. Rev. Lett. 2002, 89, 036801. 10.1103/PhysRevLett.89.036801 CASPubMedWeb of Science®Google Scholar 13N. Kirkwood, B. Singh, P. Mulvaney, Adv. Mater. Interfaces 2016, 3, 1600868. 10.1002/admi.201600868 CASWeb of Science®Google Scholar 14C. Rolin, E. Kang, J.-H. Lee, G. Borghs, P. Heremans, J. Genoe, Nat. Commun. 2017, 8, 14975. 10.1038/ncomms14975 CASPubMedWeb of Science®Google Scholar 15W. Kaiser, T. Albes, A. Gagliardi, Phys. Chem. Chem. Phys. 2018, 20, 8897. 10.1039/C8CP00544C CASPubMedWeb of Science®Google Scholar 16S. Chen, W. Cao, T. Liu, S. W. Tsang, Y. Yang, X. Yan, L. Qian, Nat. Commun. 2019, 10, 765. 10.1038/s41467-019-08749-2 CASPubMedWeb of Science®Google Scholar 17H. Jung, N. Ahn, V. I. Klimov, Nat. Photonics 2021, 15, 643. 10.1038/s41566-021-00827-6 CASWeb of Science®Google Scholar 18X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96. 10.1038/nature13829 CASPubMedWeb of Science®Google Scholar 19G. Yuan, D. E. Gómez, N. Kirkwood, K. Boldt, P. Mulvaney, ACS Nano 2018, 12, 3397. 10.1021/acsnano.7b09052 CASPubMedWeb of Science®Google Scholar 20H.-M. Kim, J. Kim, J. Lee, J. Jang, ACS Appl. Mater. Interfaces 2015, 7, 24592. 10.1021/acsami.5b06505 CASPubMedWeb of Science®Google Scholar 21D. Chen, D. Chen, X. Dai, Z. Zhang, J. Lin, Y. Deng, Y. Hao, C. Zhang, H. Zhu, F. Gao, Y. Jin, Adv. Mater. 2020, 32, 2006178. 10.1002/adma.202006178 PubMedWeb of Science®Google Scholar 22J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, A. Nathan, ACS Photonics 2016, 3, 215. 10.1021/acsphotonics.5b00267 CASWeb of Science®Google Scholar 23H.-M. Kim, S. Cho, J. Kim, H. Shin, J. Jang, ACS Appl. Mater. Interfaces 2018, 10, 24028. 10.1021/acsami.8b04721 CASPubMedWeb of Science®Google Scholar 24Z. Ye, M. Chen, X. Chen, W. Ma, X. Sun, L. Wu, X. Lin, Y. Chen, S. Chen, NPJ Flexible Electron. 2022, 6, 96. 10.1038/s41528-022-00231-2 Google Scholar 25D. Liu, S. Cao, S. Wang, H. Wang, W. Dai, B. Zou, J. Zhao, Y. Wang, J. Phys. Chem. Lett. 2020, 11, 3111. 10.1021/acs.jpclett.0c00836 CASPubMedWeb of Science®Google Scholar 26M. D. McCluskey, S. J. Jokela, J. Appl. Phys. 2009, 106, 071101. 10.1063/1.3216464 CASWeb of Science®Google Scholar 27Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Solid State Ion. 2021, 360, 115544. 10.1016/j.ssi.2020.115544 CASWeb of Science®Google Scholar 28M. A. Boles, D. Ling, T. Hyeon, D. V. Talapin, Nat. Mater. 2016, 15, 141. 10.1038/nmat4526 CASPubMedWeb of Science®Google Scholar 29A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak, A. G. Kanaras, Chem. Rev. 2019, 119, 4819. 10.1021/acs.chemrev.8b00733 CASPubMedWeb of Science®Google Scholar 30S. Ben Dkhil, D. Duché, M. Gaceur, A. K. Thakur, F. B. Aboura, L. Escoubas, J. J. Simon, A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Q. Bao, M. Fahlman, C. Videlot-Ackermann, O. Margeat, J. Ackermann, Adv. Energy Mater. 2014, 4, 1400805. 10.1002/aenm.201400805 Web of Science®Google Scholar 31D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato, R. Martins, Sol. Energy Mater. Sol. Cells 2017, 163, 255. 10.1016/j.solmat.2017.01.030 CASWeb of Science®Google Scholar 32S. Bai, Y. Jin, X. Liang, Z. Ye, Z. Wu, B. Sun, Z. Ma, Z. Tang, J. Wang, U. Würfel, F. Gao, F. Zhang, Adv. Energy Mater. 2015, 5, 1401606. 10.1002/aenm.201401606 CASWeb of Science®Google Scholar 33S. D. Pike, E. R. White, M. S. P. Shaffer, C. K. Williams, Nat. Commun. 2016, 7, 13008. 10.1038/ncomms13008 CASPubMedWeb of Science®Google Scholar 34S. Talam, S. R. Karumuri, N. Gunnam, ISRN Nanotechnol. 2012, 2012, 372505. 10.5402/2012/372505 Google Scholar 35J. Ma, K. Tang, H. Mao, J. Ye, S. Zhu, Z. Xu, Z. Yao, S. Gu, Y. Zheng, Appl. Surf. Sci. 2018, 435, 297. 10.1016/j.apsusc.2017.11.092 CASWeb of Science®Google Scholar 36 Madelung O. Semiconductors: Data Handbook[M]. Springer Science & Business Media 2004. Google Scholar 37H. E. Ruda, B. Lai, J. Appl. Phys. 1990, 68, 1714. 10.1063/1.346599 CASWeb of Science®Google Scholar 38Y.-N. Xu, W. Y. Ching, Phys. Rev. B 1993, 48, 4335. 10.1103/PhysRevB.48.4335 CASPubMedWeb of Science®Google Scholar 39S. Tan, T. Huang, I. Yavuz, R. Wang, T. W. Yoon, M. Xu, Q. Xing, K. Park, D.-K. Lee, C.-H. Chen, R. Zheng, T. Yoon, Y. Zhao, H.-C. Wang, D. Meng, J. Xue, Y. J. Song, X. Pan, N.-G. Park, J.-W. Lee, Y. Yang, Nature 2022, 605, 268. 10.1038/s41586-022-04604-5 CASPubMedWeb of Science®Google Scholar 40C. Villeneuve-Faure, K. Makasheva, L. Boudou, G. Teyssedre, Nanotechnology 2016, 27, 245702. 10.1088/0957-4484/27/24/245702 CASPubMedWeb of Science®Google Scholar 41D. Chen, R. Lu, R. Yu, Y. Dai, H. Zhao, D. Wu, P. Wang, J. Zhu, Z. Pu, L. Chen, J. Yu, S. Mu, Angew. Chem., Int. Ed. 2022, 61, e202208642. 10.1002/anie.202208642 CASPubMedWeb of Science®Google Scholar 42R. E. Nugraha, S. Wahyuningsih, A. Ramelan, Pharm. Res. 2015, 7, 85. Google Scholar 43Z. Xia, L. Baird, N. Zimmerman, M. Yeager, Appl. Surf. Sci. 2017, 416, 565. 10.1016/j.apsusc.2017.04.095 CASWeb of Science®Google Scholar 44J. S. Eensalu, K. Tõnsuaadu, J. Adamson, I. Oja Acik, M. Krunks, J. Therm. Anal. Calorim. 2022, 147, 4899. 10.1007/s10973-021-10885-1 CASWeb of Science®Google Scholar 45J. G. Croissant, C. Qi, M. Maynadier, X. Cattoën, M. W. Chi Man, L. Raehm, O. Mongin, M. Blanchard-Desce, M. Garcia, M. Gary-Bobo, J. O. Durand, Front. Mol. Biosci. 2016, 3, 1. Google Scholar 46V. Gurylev, T. P. Perng, J. Eur. Ceram. Soc. 2021, 41, 4977. 10.1016/j.jeurceramsoc.2021.03.031 CASWeb of Science®Google Scholar 47P. A. Spevack, N. S. Mcintyre, J. Phys. Chem. 1993, 97, 11031. 10.1021/j100144a021 CASWeb of Science®Google Scholar 48R. N. S. Sodhi, R. G. Cavell, J. Electron. Spectros. Relat. Phenomena 1986, 41, 1. 10.1016/0368-2048(86)80028-7 CASWeb of Science®Google Scholar 49W. Ranke, J. Electron. Spectros. Relat. Phenomena 1993, 61, 231. 10.1016/0368-2048(93)80053-O CASWeb of Science®Google Scholar 50L. Weinhardt, T. Gleim, O. Fuchs, C. Heske, E. Umbach, M. Bär, H.-J. Muffler, C..-H. Fischer, M. C. Lux-Steiner, Y. Zubavichus, T. P. Niesen, F. Karg, Appl. Phys. Lett. 2003, 82, 571. 10.1063/1.1539553 CASWeb of Science®Google Scholar 51N. Dengo, A. Vittadini, M. M. Natile, S. Gross, J. Phys. Chem. C 2020, 124, 7777. 10.1021/acs.jpcc.9b11323 CASWeb of Science®Google Scholar 52A. A. Sokol, S. A. French, S. T. Bromley, C. R. A. Catlow, H. J. J. Van Dam, P. Sherwood, Faraday Discuss. 2007, 134, 267. 10.1039/B607406E CASPubMedWeb of Science®Google Scholar 53N. T. K. Thanh, N. Maclean, S. Mahiddine, Chem. Rev. 2014, 114, 7610. 10.1021/cr400544s CASPubMedWeb of Science®Google Scholar 54H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, L. Chen, Z. Zeng, X. Li, Y. Jia, S. Wang, Z. Du, L. S. Li, Z. Zhang, Nat. Photonics 2019, 13, 192. 10.1038/s41566-019-0364-z CASWeb of Science®Google Scholar 55J. Li, D. Wang, G. Zhang, C. Yang, W. Guo, X. Han, X. Bai, R. Chen, C. Qin, J. Hu, L. Xiao, S. Jia, Nano Res. 2022, 15, 7655. 10.1007/s12274-022-4389-0 CASWeb of Science®Google Scholar 56V. I. Klimov, A. A. Mikhailovsky, D. W. Mcbranch, C. A. Leatherdale, M. G. Bawendi, Science 2000, 287, 1011. 10.1126/science.287.5455.1011 CASPubMedWeb of Science®Google Scholar 57X. Hou, J. Kang, H. Qin, X. Chen, J. Ma, J. Zhou, L. Chen, L. Wang, L.-W. Wang, X. Peng, Nat. Commun. 2019, 10, 1750. 10.1038/s41467-019-09737-2 PubMedWeb of Science®Google Scholar 58S. Morozov, E. L. Pensa, A. H. Khan, A. Polovitsyn, E. Cortes, S. A. Maier, S. Vezzoli, I. Moreels, R. Sapienza, Sci. Adv. 2020, 6(38), eabb1821. Google Scholar 59J. Zhao, G. Nair, B. R. Fisher, M. G. Bawendi, Phys. Rev. Lett. 2010, 104, 157403. 10.1103/PhysRevLett.104.157403 CASPubMedWeb of Science®Google Scholar 60A. L. Efros, D. J. Nesbitt, Nat. Nanotechnol. 2016, 11, 661. 10.1038/nnano.2016.140 CASPubMedWeb of Science®Google Scholar 61Y.-S. Park, W. K. Bae, J. M. Pietryga, V. I. Klimov, ACS Nano 2014, 8, 7288. 10.1021/nn5023473 CASPubMedWeb of Science®Google Scholar 62S. A. Empedocles, M. G. Bawendi, Science 1997, 278, 2114. 10.1126/science.278.5346.2114 CASPubMedWeb of Science®Google Scholar 63H. Lee, B. G. Jeong, W. K. Bae, D. C. Lee, J. Lim, Nat. Commun. 2021, 12, 5669. 10.1038/s41467-021-25955-z CASPubMedGoogle Scholar 64M. Xu, D. Chen, J. Lin, X. Lu, Y. Deng, S. He, X. Zhu, W. Jin, Y. Jin, Nano Res. 2022, 15, 7453. 10.1007/s12274-022-4260-3 CASWeb of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issue2307298 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tony发布了新的文献求助10
1秒前
1秒前
修仙完成签到,获得积分10
2秒前
小易完成签到,获得积分10
2秒前
liliy发布了新的文献求助10
3秒前
3秒前
Owen应助今我来思采纳,获得10
3秒前
5秒前
舒心的亦瑶完成签到,获得积分10
5秒前
6秒前
6秒前
修仙发布了新的文献求助10
6秒前
7秒前
耍酷的香菇完成签到,获得积分10
8秒前
汉堡包应助tong童采纳,获得10
9秒前
白白完成签到 ,获得积分10
9秒前
弋禾火发布了新的文献求助10
9秒前
10秒前
窝头完成签到,获得积分10
10秒前
feitian201861完成签到,获得积分10
10秒前
蝶恋花发布了新的文献求助10
10秒前
周周完成签到,获得积分10
11秒前
百叶发布了新的文献求助10
11秒前
12秒前
鹤轸发布了新的文献求助10
13秒前
十九完成签到,获得积分10
13秒前
超级的雪糕完成签到 ,获得积分10
16秒前
MJY完成签到,获得积分20
17秒前
17秒前
jdjdjdy发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
弋禾火完成签到,获得积分10
19秒前
21秒前
tong童发布了新的文献求助10
23秒前
yoniko发布了新的文献求助10
23秒前
tony完成签到,获得积分10
24秒前
远方发布了新的文献求助10
24秒前
24秒前
高分求助中
The three stars each: the Astrolabes and related texts 1100
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Psychological Warfare Operations at Lower Echelons in the Eighth Army, July 1952 – July 1953 400
宋、元、明、清时期“把/将”字句研究 300
Julia Lovell - Maoism: a global history 300
转录因子AP-1抑制T细胞抗肿瘤免疫的机制 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2433089
求助须知:如何正确求助?哪些是违规求助? 2115499
关于积分的说明 5366584
捐赠科研通 1843457
什么是DOI,文献DOI怎么找? 917395
版权声明 561559
科研通“疑难数据库(出版商)”最低求助积分说明 490739