Enhancing healthcare decision support through explainable AI models for risk prediction

决策支持系统 医疗保健 计算机科学 人工智能 经济 经济增长
作者
Shiru Niu,Q Yin,Jing Ma,Yunya Song,Richard Yi Da Xu,Liang Bai,Wei Pan,Xian Yang
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:181: 114228-114228 被引量:3
标识
DOI:10.1016/j.dss.2024.114228
摘要

Electronic health records (EHRs) are a valuable source of information that can aid in understanding a patient's health condition and making informed healthcare decisions. However, modelling longitudinal EHRs with heterogeneous information is a challenging task. Although recurrent neural networks (RNNs), which are current artificial intelligence (AI) models, have the capability to capture longitudinal information, their explanatory power is limited. Predictive clustering is a recent development in this field, which provides cluster-level explainable evidence for disease risk prediction. Nonetheless, the challenge of determining the optimal number of clusters has put a brake on the widespread application of predictive clustering for disease risk prediction. In this paper, we introduce a novel non-parametric predictive clustering-based risk prediction model that integrates the Dirichlet Process Mixture Model (DPMM) with predictive clustering via neural networks. To enhance the model's interpretability, we integrate attention mechanisms that enable the capture of local-level evidence in addition to the cluster-level evidence provided by predictive clustering. The outcome of this research is the development of a multi-level explainable artificial intelligence (AI) model. We evaluated the proposed model on two real-world datasets and demonstrated its effectiveness in capturing longitudinal EHR information for disease risk prediction. Additionally, the model was successful in generating explainable evidence to support its predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
专一的平卉完成签到,获得积分10
2秒前
alexyang发布了新的文献求助10
2秒前
2秒前
万宁发布了新的文献求助10
2秒前
橘子大王发布了新的文献求助10
2秒前
JamesPei应助啵啵采纳,获得10
3秒前
15136780701完成签到 ,获得积分10
3秒前
自信即巅峰完成签到,获得积分10
4秒前
4秒前
5秒前
dengqr5发布了新的文献求助10
6秒前
喜乐发布了新的文献求助10
7秒前
7秒前
精明的期待完成签到,获得积分20
7秒前
8秒前
SYLH应助胖咕噜采纳,获得10
8秒前
科研通AI5应助crowd_lpy采纳,获得10
8秒前
9秒前
9秒前
于沁冉发布了新的文献求助10
10秒前
科研通AI5应助不想学习采纳,获得50
10秒前
10秒前
天堂制造发布了新的文献求助10
11秒前
11秒前
在水一方应助xqq采纳,获得10
12秒前
dengqr5完成签到,获得积分10
12秒前
13秒前
慕青应助包容的灰狼采纳,获得10
13秒前
13秒前
鱼fish发布了新的文献求助10
14秒前
简单的幸福完成签到,获得积分10
14秒前
15秒前
liguilong发布了新的文献求助10
15秒前
15秒前
科研顺利发布了新的文献求助10
15秒前
羊羊发布了新的文献求助10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
A monograph of the genera Conocybe and Pholiotina in Europe 200
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
The direct observation of dislocations 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836735
求助须知:如何正确求助?哪些是违规求助? 3378964
关于积分的说明 10507075
捐赠科研通 3098797
什么是DOI,文献DOI怎么找? 1706621
邀请新用户注册赠送积分活动 821119
科研通“疑难数据库(出版商)”最低求助积分说明 772445