Garlic Origin Traceability and Identification Based on Fusion of Multi-Source Heterogeneous Spectral Information

预处理器 平滑的 数据预处理 光谱学 模式识别(心理学) 人工智能 随机森林 传感器融合 VNIR公司 计算机科学 高光谱成像 生物系统 数学 生物 统计 物理 量子力学
作者
Hao Han,Ruyi Sha,Jing Dai,Zhenzhen Wang,Jianwei Mao,Min Cai
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:13 (7): 1016-1016 被引量:48
标识
DOI:10.3390/foods13071016
摘要

The chemical composition and nutritional content of garlic are greatly impacted by its production location, leading to distinct flavor profiles and functional properties among garlic varieties from diverse origins. Consequently, these variations determine the preference and acceptance among diverse consumer groups. In this study, purple-skinned garlic samples were collected from five regions in China: Yunnan, Shandong, Henan, Anhui, and Jiangsu Provinces. Mid-infrared spectroscopy and ultraviolet spectroscopy were utilized to analyze the components of garlic cells. Three preprocessing methods, including Multiple Scattering Correction (MSC), Savitzky–Golay Smoothing (SG Smoothing), and Standard Normalized Variate (SNV), were applied to reduce the background noise of spectroscopy data. Following variable feature extraction by Genetic Algorithm (GA), a variety of machine learning algorithms, including XGboost, Support Vector Classification (SVC), Random Forest (RF), and Artificial Neural Network (ANN), were used according to the fusion of spectral data to obtain the best processing results. The results showed that the best-performing model for ultraviolet spectroscopy data was SNV-GA-ANN, with an accuracy of 99.73%. The best-performing model for mid-infrared spectroscopy data was SNV-GA-RF, with an accuracy of 97.34%. After the fusion of ultraviolet and mid-infrared spectroscopy data, the SNV-GA-SVC, SNV-GA-RF, SNV-GA-ANN, and SNV-GA-XGboost models achieved 100% accuracy in both training and test sets. Although there were some differences in the accuracy of the four models under different preprocessing methods, the fusion of ultraviolet and mid-infrared spectroscopy data yielded the best outcomes, with an accuracy of 100%. Overall, the combination of ultraviolet and mid-infrared spectroscopy data fusion and chemometrics established in this study provides a theoretical foundation for identifying the origin of garlic, as well as that of other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
saisai发布了新的文献求助20
1秒前
2秒前
小蘑菇应助博学为农采纳,获得10
4秒前
4秒前
天天快乐应助三日采纳,获得10
7秒前
田様应助北彧采纳,获得10
7秒前
欣喜蘑菇发布了新的文献求助10
8秒前
呵呵发布了新的文献求助10
8秒前
9秒前
小田完成签到 ,获得积分10
9秒前
cherry bomb完成签到,获得积分10
13秒前
斯文败类应助ZLX采纳,获得10
14秒前
安详的曲奇完成签到,获得积分10
15秒前
意昂发布了新的文献求助10
15秒前
冷傲凝琴发布了新的文献求助10
16秒前
wanci应助saisai采纳,获得20
18秒前
19秒前
19秒前
领导范儿应助刘小雨采纳,获得10
19秒前
一米八发布了新的文献求助10
21秒前
居选金发布了新的文献求助10
22秒前
玊尔完成签到,获得积分20
24秒前
25秒前
26秒前
hoongyan完成签到 ,获得积分10
27秒前
28秒前
Lerler完成签到,获得积分10
30秒前
土豪的鸿煊完成签到,获得积分10
31秒前
邵洋发布了新的文献求助10
31秒前
31秒前
彭于晏应助XieMeina采纳,获得10
34秒前
Lerler发布了新的文献求助10
34秒前
领导范儿应助whatever采纳,获得10
35秒前
YY完成签到,获得积分10
37秒前
lynnnnnn完成签到,获得积分20
37秒前
angelinazh发布了新的文献求助10
40秒前
玉汝于成发布了新的文献求助10
44秒前
欣喜蘑菇完成签到,获得积分10
46秒前
48秒前
48秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382