Improved YOLOv5-based pore defect detection algorithm for wire arc additive manufacturing

材料科学 弧(几何) 复合材料 算法 机械工程 计算机科学 工程类
作者
Xiangman Zhou,Shicheng Zheng,Runsheng Li,Xiaochen Xiong,Youlu Yuan,Xingwang Bai,Junjian Fu,Haiou Zhang
出处
期刊:Materials today communications [Elsevier BV]
卷期号:39: 108710-108710 被引量:7
标识
DOI:10.1016/j.mtcomm.2024.108710
摘要

The identification and detection of microstructural defects in wire arc additive manufacturing (WAAM) specimens play a significant role in characterizing and analyzing the mechanical properties of these specimens. Porosity is one of the primary forms of microstructural defects in WAAM specimens. Therefore, in this paper, a model for detecting pore defects in the cross-section of WAAM specimens based on the YOLOv5s model is proposed. The proposed model incorporates several improvements to enhance its speed and accuracy. Firstly, a lightweight backbone network is constructed to improve the detection speed by introducing the GhostConv and PConv modules. Secondly, an efficient spatial pooling pyramid structure (ESPP) is designed to enhance model processing speed and detection accuracy. Thirdly, the neck network incorporates a newly designed double path aggregation network (DPAN) to enhance the preservation of intricate details within the network. Finally, the C3 module in the YOLOv5s feature fusion network is improved, and the GC3ECA module is proposed by combining the efficient channel attention mechanism ECA and GhostConv module to enhance channel information and reduce redundant information. Tests on the self-built WAAM defect dataset and NEU-DET dataset show that the mean average precision(mAP)of the improved model is 90.4% and 76.5%, which is 1.9% and 3.8% higher than that of the YOLOv5s model, respectively. Meanwhile, the detection speed of the improved model reaches 74.21 frames per second (FPS), which is 38.7% higher than YOLOv5s.The experimental results show that the improved model has better overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llly完成签到,获得积分10
1秒前
风清扬发布了新的文献求助10
1秒前
排骨大王完成签到,获得积分10
2秒前
奶油布丁发布了新的文献求助10
3秒前
fbwg完成签到,获得积分10
4秒前
wanci应助个性的如风采纳,获得10
4秒前
ZSH发布了新的文献求助10
4秒前
太清完成签到 ,获得积分10
4秒前
CodeCraft应助gegi采纳,获得10
5秒前
Tokgo完成签到,获得积分10
5秒前
zhang应助钱塘郎中采纳,获得10
8秒前
不安的可乐完成签到,获得积分10
8秒前
8秒前
Hightowerliu18完成签到,获得积分0
9秒前
ZZQ完成签到 ,获得积分10
10秒前
my196755完成签到,获得积分10
10秒前
欣慰觅露完成签到 ,获得积分10
10秒前
执着的忆雪完成签到,获得积分10
10秒前
太叔丹翠完成签到 ,获得积分10
11秒前
弹簧豆完成签到,获得积分10
11秒前
coolru完成签到 ,获得积分10
12秒前
南国完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
微笑的小霸王完成签到,获得积分10
16秒前
王鸿鑫发布了新的文献求助10
16秒前
漂亮的向日葵完成签到 ,获得积分10
16秒前
17秒前
zly1053完成签到,获得积分10
18秒前
Blank完成签到 ,获得积分10
18秒前
英勇的半兰完成签到,获得积分10
19秒前
hhh完成签到 ,获得积分10
19秒前
danporzhu完成签到,获得积分10
19秒前
hao完成签到,获得积分10
19秒前
执意完成签到 ,获得积分10
21秒前
小林完成签到,获得积分10
21秒前
研友_nxV0x8完成签到,获得积分20
22秒前
自信的访云完成签到,获得积分10
22秒前
徐0202完成签到,获得积分10
23秒前
Gin完成签到 ,获得积分10
23秒前
LS发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901547
求助须知:如何正确求助?哪些是违规求助? 4180853
关于积分的说明 12977721
捐赠科研通 3945992
什么是DOI,文献DOI怎么找? 2164367
邀请新用户注册赠送积分活动 1182663
关于科研通互助平台的介绍 1089153