Dynamic Bit-Wise Semantic Transformer Hashing for Multi-Modal Retrieval

作者
Wentao Tan,Fengling Li,Lei Zhu,Weili Guan,Jingjing Li,Zhiyong Cheng,Heng Tao Shen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-16
标识
DOI:10.1109/tpami.2025.3630209
摘要

Multi-modal hashing aims to succinctly encode heterogeneous modalities into binary hash codes, facilitating efficient multimedia retrieval characterized by low storage demands and high retrieval speed. Despite the commendable achievements of existing methods, they still face three crucial challenges: 1) Inadequate bridging of the heterogeneous modality gap through coarse, global feature-level alignment and fusion. 2) The erosion of bit independence and consequent limitations on the semantic representation capacity of hash codes during feature-level hash code learning. 3) The insufficiency of binary label-based pairwise semantic preservation strategies in capturing intricate fine-grained semantic correlations within multi-modal data. To address these challenges, this paper introduces the Dynamic Bit-wise Semantic Transformer Hashing (DBSTH) framework. Remarkably, it treats each hash bit as a unique semantic concept, facilitating concept-level alignment of heterogeneous modalities. This safeguards bit independence and augments representation capabilities. Specifically, we devise a dynamic unit fusion strategy for the adaptive combination of local multi-modal information units, facilitating the acquisition of bit-wise semantic concepts. Subsequently, we incorporate a transformer encoder to refine these concepts by uncovering latent correlations among distinct concepts. Finally, we perform the multi-modal alignment and fusion on the fine-grained concept-level, independently encoding each concept to its corresponding hash bit. To provide enhanced guidance for concept learning, a label prototype learning mechanism is introduced, which learns prototype embeddings for all categories through the consideration of co-occurrence priors. This mechanism effectively captures fine-grained explicit semantic correlations and generates supervising hash codes. Additionally, to improve the robustness of the hashing model in handling noisy multi-modal data, a masked concept learning strategy is introduced, facilitating the acquisition of resilient semantic concepts. Extensive experiments conducted on three widely tested multi-modal retrieval datasets demonstrate the superiority of our method in conventional, noisy, and open-set retrieval scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DIAPTERA完成签到,获得积分10
刚刚
怡然浩然完成签到,获得积分10
1秒前
loren发布了新的文献求助10
1秒前
小黑完成签到,获得积分10
2秒前
2秒前
小白发布了新的文献求助10
3秒前
努努酱完成签到 ,获得积分10
5秒前
无极微光完成签到 ,获得积分0
5秒前
6秒前
6秒前
ChenYe完成签到,获得积分10
6秒前
cocofan完成签到 ,获得积分10
7秒前
7秒前
zz完成签到 ,获得积分10
8秒前
tony完成签到,获得积分10
9秒前
Stan完成签到 ,获得积分10
10秒前
DIAPTERA发布了新的文献求助10
11秒前
思思发布了新的文献求助10
11秒前
long完成签到,获得积分10
11秒前
虚幻傲珊完成签到 ,获得积分10
11秒前
11秒前
慕卉发布了新的文献求助10
11秒前
12秒前
明亮梦山完成签到 ,获得积分10
12秒前
内向的惜芹完成签到,获得积分10
13秒前
小青椒应助Bressanone采纳,获得30
14秒前
Ikkyu完成签到 ,获得积分10
15秒前
直率的钢铁侠完成签到,获得积分10
16秒前
16秒前
sxc发布了新的文献求助10
16秒前
Edinburgh完成签到,获得积分10
18秒前
烟花应助浅呀呀呀采纳,获得10
18秒前
liuzhongyi完成签到,获得积分10
19秒前
净净子完成签到 ,获得积分10
19秒前
zhujingyao完成签到,获得积分10
20秒前
21秒前
芋泥芝士完成签到,获得积分10
21秒前
123发布了新的文献求助10
21秒前
Lucky.完成签到 ,获得积分0
23秒前
qsxy发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304842
求助须知:如何正确求助?哪些是违规求助? 4451080
关于积分的说明 13850819
捐赠科研通 4338377
什么是DOI,文献DOI怎么找? 2381863
邀请新用户注册赠送积分活动 1376934
关于科研通互助平台的介绍 1344361