清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of a multi-agent adaptive recommendation system based on reinforcement learning

作者
Barbara Romaniuk,O. V. Peliushkevych
出处
期刊:Eastern-European Journal of Enterprise Technologies [Kharkiv State Academy of Physical Culture]
卷期号:5 (2 (137)): 43-54
标识
DOI:10.15587/1729-4061.2025.340491
摘要

This study's object is the process that improves efficiency and accuracy in delivering personalized recommendations to users in systems based on reinforcement learning. The principal task addressed in the study is to improve recommendation adaptation and personalization by assigning a dedicated agent to each user. This approach reduces the influence of other users’ activity and allows for more precise modeling of individual preferences. The proposed approach employs an Actor–Critic model implemented using the Deep Deterministic Policy Gradient algorithm to achieve more stable training and maximize long-term rewards in sequential decision-making processes. Recommendations are generated using the unique characteristics of items that are based on users’ historical interactions. Neural networks are trained with separate parameter configurations for single-agent and multi-agent models. Experimental results on the MovieLens dataset demonstrate the superiority of the multi-agent model over the single-agent baseline across key evaluation metrics. For top-5 recommendations, the multi-agent model achieved improvements of + 4% for Precision@5; + 0.32% for Recall@5; and + 2.92% in Normalized Discounted Cumulative Gain NDCG@5. For top-10 recommendations, gains were + 1% for Precision@10; + 0.18% for Recall@10; and + 1.14% for NDCG@10, respectively. Simulations for individual users showed that the multi-agent model outperformed the single-agent baseline in 66 out of 100 cases in terms of cumulative reward. The proposed system demonstrates effectiveness in capturing user preferences, improving recommendation quality, and adapting to evolving user preferences over time. The main area of practical application for the results includes dynamic online environments such as e-commerce systems, media platforms, social networks, and news aggregators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼亦绿完成签到,获得积分10
1秒前
al完成签到 ,获得积分0
14秒前
MchemG应助科研通管家采纳,获得100
40秒前
MchemG应助科研通管家采纳,获得100
40秒前
MchemG应助科研通管家采纳,获得100
40秒前
MchemG应助科研通管家采纳,获得100
41秒前
科研通AI6应助科研通管家采纳,获得30
41秒前
MchemG应助科研通管家采纳,获得100
41秒前
obedVL完成签到,获得积分10
47秒前
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
hb发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
MchemG应助科研通管家采纳,获得100
2分钟前
nanali19完成签到,获得积分10
2分钟前
zzmyyds发布了新的文献求助10
3分钟前
科目三应助朴素的雨筠采纳,获得10
3分钟前
woxinyouyou完成签到,获得积分0
4分钟前
juan完成签到 ,获得积分0
4分钟前
任性翠安完成签到 ,获得积分10
4分钟前
麦旋风完成签到,获得积分10
5分钟前
Stella应助zzmyyds采纳,获得30
6分钟前
彭于晏应助zzmyyds采纳,获得30
6分钟前
星辰大海应助zzmyyds采纳,获得10
6分钟前
情怀应助zzmyyds采纳,获得30
6分钟前
大模型应助zzmyyds采纳,获得10
6分钟前
小蘑菇应助zzmyyds采纳,获得10
6分钟前
electricelectric应助zzmyyds采纳,获得10
6分钟前
千里草完成签到,获得积分10
7分钟前
ala完成签到,获得积分10
8分钟前
orixero应助科研通管家采纳,获得30
8分钟前
9分钟前
9分钟前
liuye0202完成签到,获得积分10
9分钟前
Antares发布了新的文献求助10
9分钟前
忧心的从蓉完成签到,获得积分20
9分钟前
浮游应助忧心的从蓉采纳,获得30
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357535
求助须知:如何正确求助?哪些是违规求助? 4488907
关于积分的说明 13972680
捐赠科研通 4390242
什么是DOI,文献DOI怎么找? 2411949
邀请新用户注册赠送积分活动 1404536
关于科研通互助平台的介绍 1378860