DIVFusion: Darkness-free infrared and visible image fusion

人工智能 计算机视觉 图像融合 计算机科学 融合 失真(音乐) 对比度(视觉) 图像质量 纹理(宇宙学) 图像(数学) 放大器 计算机网络 哲学 语言学 带宽(计算)
作者
Linfeng Tang,Xinyu Xiang,Hao Zhang,Meiqi Gong,Jiayi Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:91: 477-493 被引量:174
标识
DOI:10.1016/j.inffus.2022.10.034
摘要

As a vital image enhancement technology, infrared and visible image fusion aims to generate high-quality fused images with salient targets and abundant texture in extreme environments. However, current image fusion methods are all designed for infrared and visible images with normal illumination. In the night scene, existing methods suffer from weak texture details and poor visual perception due to the severe degradation in visible images, which affects subsequent visual applications. To this end, this paper advances a darkness-free infrared and visible image fusion method (DIVFusion), which reasonably lights up the darkness and facilitates complementary information aggregation. Specifically, to improve the fusion quality of nighttime images, which suffer from low illumination, texture concealment, and color distortion, we first design a scene-illumination disentangled network (SIDNet) to strip the illumination degradation in nighttime visible images while preserving informative features of source images. Then, a texture–contrast enhancement fusion network (TCEFNet) is devised to integrate complementary information and enhance the contrast and texture details of fused features. Moreover, a color consistency loss is designed to mitigate color distortion from enhancement and fusion. Finally, we fully consider the intrinsic relationship between low-light image enhancement and image fusion, achieving effective coupling and reciprocity. In this way, the proposed method is able to generate fused images with real color and significant contrast in an end-to-end manner. Extensive experiments demonstrate that DIVFusion is superior to state-of-the-art algorithms in terms of visual quality and quantitative evaluations. Particularly, low-light enhancement and dual-modal fusion provide more effective information to the fused image and boost high-level vision tasks. Our code is publicly available at https://github.com/Xinyu-Xiang/DIVFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柿柿发布了新的文献求助10
1秒前
生动孤丝发布了新的文献求助10
1秒前
2秒前
2秒前
冰安完成签到 ,获得积分10
2秒前
2秒前
飞翔的霸天哥应助齐嘉懿采纳,获得30
2秒前
听话的代芙完成签到 ,获得积分10
3秒前
Freya发布了新的文献求助10
3秒前
5秒前
6秒前
幻影发布了新的文献求助10
7秒前
Ming Chen发布了新的文献求助10
8秒前
8秒前
lss发布了新的文献求助10
9秒前
科研通AI5应助热情十三采纳,获得10
9秒前
nozero应助梧桐雨210采纳,获得50
9秒前
10秒前
10秒前
香蕉觅云应助12366666采纳,获得10
10秒前
dinghaifeng完成签到,获得积分10
10秒前
10秒前
小扬仔21发布了新的文献求助30
12秒前
1234发布了新的文献求助10
13秒前
13秒前
13秒前
小二郎应助Freya采纳,获得30
14秒前
幻影完成签到,获得积分10
14秒前
14秒前
14秒前
wyj完成签到,获得积分10
15秒前
16秒前
小莫发布了新的文献求助10
16秒前
研友_Z6WWQ8完成签到,获得积分10
17秒前
哒哒哒太阳完成签到,获得积分10
18秒前
华仔应助zora采纳,获得10
18秒前
hqh发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818405
求助须知:如何正确求助?哪些是违规求助? 3361530
关于积分的说明 10413272
捐赠科研通 3079791
什么是DOI,文献DOI怎么找? 1693005
邀请新用户注册赠送积分活动 814546
科研通“疑难数据库(出版商)”最低求助积分说明 768193