亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Practical Approach to detect Indoor and Outdoor Scene Recognition

计算机科学 人工智能 视觉对象识别的认知神经科学 问题陈述 计算机视觉 深度学习 规范化(社会学) 场景统计 对象(语法) 感知 工程类 人类学 生物 社会学 神经科学 管理科学
作者
Vaishali Sharma,Nitesh Nagpal,Ankit Shandilya,Aman Dureja,Ajay Dureja
标识
DOI:10.1145/3590837.3590923
摘要

In computer vision recognition of scenes is a long-time research problem. Scene can be defined as the real-time environment view which consists of a lot of views (like road, tree, building, parks, etc.) in a meaningful manner. The problem of scene recognition can be explained as assessment of labels such as "road", "building", "hall", "bedroom" or in an extra simplified way "Indoor scene" and "Outdoor scenes is classified on an input image based on the object or environment of the image. A huge amount of data is created and available every second in this growing era of digital data. Scene recognition is still a rising area that did not attain much success as compared to image recognition due to the vast variability of features in the scenic environment. Because of this reason, there is not a lot of work being completed these days in this area. This project focuses on the evaluation of problem statements using all the literature surveys completed lately and offering solutions for that problem statement. For resolving the proposed problem declaration ResNet and VGG variants are used ResNet18, 50 and 152 & VGG16, 19, and VGG19 with batch normalization are implemented. The entire scene recognition procedure is discussed in this report and the main motive is to form a foundation that can be further continued in proposing a new algorithm. Before deep learning the design and implementation of the scene recognition model depended on the low dimensional portrayal of the scene. The utilization of deep learning especially CNN for scene recognition has gotten extraordinary attention from the computer vision community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanzilin完成签到 ,获得积分10
1秒前
vagary完成签到,获得积分10
6秒前
Dasha完成签到,获得积分10
8秒前
zmx完成签到 ,获得积分10
12秒前
15秒前
16秒前
18秒前
22秒前
文继遥发布了新的文献求助10
23秒前
adam完成签到 ,获得积分10
23秒前
饼子发布了新的文献求助10
24秒前
许安发布了新的文献求助10
28秒前
顺利山柏完成签到 ,获得积分10
28秒前
sky完成签到,获得积分10
28秒前
44秒前
45秒前
sky发布了新的文献求助10
51秒前
星辰大海应助着急的绿兰采纳,获得10
54秒前
小马甲应助一一采纳,获得10
56秒前
科研通AI5应助淡然的妙芙采纳,获得10
1分钟前
完美谷秋完成签到 ,获得积分10
1分钟前
1分钟前
XueXiTong完成签到,获得积分10
1分钟前
1分钟前
1分钟前
yyy发布了新的文献求助10
1分钟前
斯文败类应助淡然的妙芙采纳,获得10
1分钟前
kk_1315完成签到,获得积分0
1分钟前
许安完成签到,获得积分10
1分钟前
NexusExplorer应助着急的绿兰采纳,获得10
1分钟前
科研通AI5应助魔幻的雪碧采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得30
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
着急的绿兰完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186091
求助须知:如何正确求助?哪些是违规求助? 4371430
关于积分的说明 13612208
捐赠科研通 4223806
什么是DOI,文献DOI怎么找? 2316665
邀请新用户注册赠送积分活动 1315295
关于科研通互助平台的介绍 1264338