Post-processing refined ECG delineation based on 1D-UNet

计算机科学 QRS波群 心跳 人工智能 节拍(声学) 波形 模式识别(心理学) 偏移量(计算机科学) 信号处理 分类 语音识别 医学 电信 声学 心脏病学 雷达 物理 计算机安全 程序设计语言
作者
Zhenqin Chen,Mengying Wang,Meiyu Zhang,Wei Huang,Hanjie Gu,Jinshan Xu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104106-104106 被引量:33
标识
DOI:10.1016/j.bspc.2022.104106
摘要

The Electrocardiography (ECG) serves as a standard method for diagnosing cardiovascular disease due to its minimal risk, affordable price and simple application. Clinical information is embedded implicitly in the intervals, amplitude or morphology of different waves that represent the heart-beat cycle in the form of ECG signals. Manually delineating the ECG signals to locate the boundaries of the P, QRS, and T waves in each heart-beat typically requires a long time professional training. To facilitate the delineation and to increase precision, we propose a post-processing refined ECG delineation method that takes full advantage of the morphological information of a heartbeat cycle both in classifying each sample point in the ECG recording using 1D-UNet and determining the boundaries of these waveforms. To proceed, the ECG signals are split into pieces of only one heart beat cycle before sending into the 1D-UNet. These single beat-annotated ECG segments enable the network better extract the local and global features of different waveforms in the ECG, which gives rise to a very precise categorization of each sample point. The post-processing algorithm then uses the morphological information of ECG signal to get rid of the influence of the misclassified data points on the extraction of the onset/offset of different wave components. Tests carried on the two public ECG databases, i.e., the LUDB and QTDB show satisfactory delineation performance, with sensitivities 99.88% and 99.48%, respectively. These results suggest possible applications in wearable and wireless devices for health monitoring. • We highlight the scope of the ECG delineation that the paper focuses and the main technique contributions to the delineation problem in the abstract. • We illustrate the theoretical basis for applying the UNet network in tackling the ECG delineation task, and compare its performance with that of the other deep neural network-based solutions. • The process of segmenting ECG signals into pieces of single heartbeat segments is detailed. Its contributions to the sample point classification and the delineation are explained. • The theoretical basis for the post-processing algorithm is explained. • New experiments are carried out to demonstrate the effectiveness of the proposed method. • A careful proof-reading is done to correct the grammar errors, typos and vague expressions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的紫霜完成签到 ,获得积分10
刚刚
Hilda007发布了新的文献求助10
刚刚
万能图书馆应助浅夏初晴采纳,获得10
1秒前
shuaixiaochuan完成签到,获得积分10
1秒前
小二郎应助Rui采纳,获得10
2秒前
2秒前
PSQ完成签到,获得积分10
2秒前
充电宝应助NL采纳,获得10
2秒前
千里发布了新的文献求助10
3秒前
3秒前
映波发布了新的文献求助10
3秒前
caoxiongfeng_512完成签到,获得积分10
4秒前
4秒前
Lucas应助典雅的丹寒采纳,获得30
5秒前
mmiww发布了新的文献求助10
5秒前
5秒前
5秒前
7秒前
7秒前
山水之乐发布了新的文献求助10
7秒前
8秒前
梨花月发布了新的文献求助10
8秒前
8秒前
a5119712发布了新的文献求助10
8秒前
sgyhbxf25发布了新的文献求助10
8秒前
mikiisme发布了新的文献求助10
8秒前
七七发布了新的文献求助10
8秒前
10秒前
11秒前
11秒前
zhangxin完成签到,获得积分10
12秒前
wujingshuai完成签到,获得积分10
12秒前
mc完成签到,获得积分10
12秒前
小白发布了新的文献求助10
12秒前
风趣问蕊发布了新的文献求助10
12秒前
jiang发布了新的文献求助30
12秒前
sss发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310786
求助须知:如何正确求助?哪些是违规求助? 4455001
关于积分的说明 13861687
捐赠科研通 4343099
什么是DOI,文献DOI怎么找? 2384947
邀请新用户注册赠送积分活动 1379413
关于科研通互助平台的介绍 1347721