AI-Based Hospital Design Process through Neuro-Symbolic Strategies.

计算机科学 过程(计算) 人工智能 程序设计语言
作者
Ameneh Sadat Fattahi Maassoum,Hero Farkisch,Mohammad Taji
出处
期刊:PubMed 卷期号:13 (7): 442-456
标识
DOI:10.22038/abjs.2024.83867.3815
摘要

Hospitals represent one of the most complex subjects in architectural design. Over time, many hospitals undergo changes in their initial spatial layouts to accommodate evolving needs. This process often presents various challenges and problems, and the absence of an optimal design process for hospitals is a primary contributor to these issues. Artificial intelligence (AI), with its advanced capabilities, can offer highly accurate and rapid solutions. This research aims to present an integrated approach that combines architecture and AI for AI-based hospital design through neuro-symbolic strategies. This research employs a theoretical-applied framework, and utilizes a descriptive-analytical method to investigate the role of artificial intelligence in the design process, particularly within hospitals. The data collection methods include a literature review and an examination of texts and studies related to architectural design and AI. Furthermore, by analyzing the data through content analysis, integrated neuro-symbolic strategies were introduced as a comprehensive approach to AI. The final model of the hospital design process, based on this approach, was subsequently presented. Unified and hybrid techniques are two methods for integrating symbolic and sub-symbolic algorithms within the integrated neuro-symbolic approach. This innovative methodology leverages the strengths of both categories of algorithms while mitigating their respective weaknesses. Among the six methods presented in this paper, the hybrid strategy-method number three (neuro-symbolic) - emerges as the most effective means of achieving an integrated process that merges AI and architecture in hospital design. In this process, the designer's interventions are minimized, allowing AI to produce the most optimal architectural design for a hospital by leveraging its capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃草草没完成签到 ,获得积分10
1秒前
3秒前
卑微小王完成签到,获得积分20
4秒前
5秒前
6秒前
7秒前
liang发布了新的文献求助10
8秒前
8秒前
晓晓马儿完成签到 ,获得积分10
9秒前
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
minkuuuuuuu应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得20
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
shhoing应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
ccm应助科研通管家采纳,获得10
11秒前
11秒前
福泽聚宝象完成签到,获得积分10
11秒前
852应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
mmichaell应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
科研通AI6应助一一采纳,获得10
12秒前
完美青旋发布了新的文献求助10
12秒前
季思锐发布了新的文献求助10
13秒前
Lyue完成签到,获得积分10
15秒前
刘隅发布了新的文献求助10
15秒前
科研通AI2S应助橘子先森采纳,获得10
15秒前
16秒前
16秒前
18秒前
曾经寒香发布了新的文献求助10
19秒前
19秒前
19秒前
静待花开完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539951
求助须知:如何正确求助?哪些是违规求助? 4626664
关于积分的说明 14600296
捐赠科研通 4567592
什么是DOI,文献DOI怎么找? 2504101
邀请新用户注册赠送积分活动 1481828
关于科研通互助平台的介绍 1453419