Designing an effective electrical model for charged water bodies is of great significance in reducing the risk of electric shock in water and enhancing the safety and reliability of electrical equipment. Aiming to resolve the problems faced in using existing charged water body modeling methods, a practical circuit model of a charged water body is developed. The basic units of the model are simply constructed using fractional-order resistance–capacitance (RC) parallel circuits. The state variables of the model can be obtained by solving the circuit equations. In addition, a practical method for obtaining the circuit model parameters is also developed. This enables the estimation of the characteristics of charged water bodies under different conditions through model simulation. The effectiveness of the proposed method is verified by comparing the estimated voltage and leakage current of the model with the actual measured values. The comparison results show that the estimated value of the model is close to the actual characteristics of the charged water body.