Integrating LC‐MS/MS and Molecular Networking for Advance Analysis and Comprehensive Flavonoids Annotation

色谱法 化学 注释 计算机科学 人工智能
作者
David Planchard,Anis Irfan Norazhar,Mohamad Shazeli Che Zain
出处
期刊:Journal of Separation Science [Wiley]
卷期号:48 (7)
标识
DOI:10.1002/jssc.70230
摘要

ABSTRACT Flavonoids, a subclass of phenolic compounds, exhibit diverse therapeutic properties, including antioxidant, anti‐inflammatory, and wound healing properties. These health‐promoting effects of flavonoids are greatly dependent on the variation in their structural diversity, which are generally perceived as complex metabolomic datasets. Among detection techniques used, state‐of‐the‐art high‐resolution liquid chromatography hyphenated with tandem mass spectrometry (LC‐MS/MS) has become a popular analytical method of choice for the analysis of flavonoids from various plant tissue extracts. Despite its broad applicability, the vast amount and complexity of fragmentation data produced have made the comprehensive identification of flavonoids remains a key challenge. An offshoot of metabolomics, currently, molecular networking (MN), a computational approach based on MS/MS data, has emerged as a revolutionary technique for identifying and characterizing numerous flavonoid molecular families. By visualizing the spectral similarities of flavonoid fingerprints, MN enables rapid dereplication, efficient in assisting annotation of unknown features with known chemical scaffolds, and demonstrates high precision in resolving structurally diverse flavonoid isomers. Various MN tools, i.e., classical molecular networking (CLMN), feature‐based molecular networking (FBMN), and substructure‐based MN (MS2LDA), streamline the identification process and improve the understanding of flavonoids biosynthesis. This review aimed to describe the recent advancement in MS‐based strategy for flavonoids characterization, starting with an overview on the application of LC‐MS/MS and its limitation in the typical dereplication workflow, followed by specific sections on MN techniques, highlighting the aspects of general principles, workflow, and its application in flavonoid research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木完成签到,获得积分10
刚刚
慕青应助DDTT采纳,获得10
1秒前
小二郎应助周才采纳,获得10
1秒前
Zosty发布了新的文献求助10
1秒前
Relax发布了新的文献求助10
2秒前
3秒前
4秒前
z_king_d_23发布了新的文献求助10
4秒前
宋姜喻发布了新的文献求助10
6秒前
辛勤的捕应助Quhang采纳,获得10
6秒前
田様应助科研通管家采纳,获得30
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Famiglistmo完成签到,获得积分10
8秒前
8秒前
高远玺完成签到 ,获得积分10
9秒前
剁手党发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
雪下卧眠完成签到,获得积分10
10秒前
rubyyoyo完成签到,获得积分10
10秒前
10秒前
忧虑的大白菜真实的钥匙完成签到,获得积分10
11秒前
wanci应助爱笑的鱼采纳,获得10
11秒前
11秒前
ding应助敲木鱼采纳,获得10
12秒前
12秒前
摸鱼宝发布了新的文献求助10
13秒前
Honahlee发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5318095
求助须知:如何正确求助?哪些是违规求助? 4460326
关于积分的说明 13878275
捐赠科研通 4350776
什么是DOI,文献DOI怎么找? 2389539
邀请新用户注册赠送积分活动 1383643
关于科研通互助平台的介绍 1353101