已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ERL‐RTDETR: A Lightweight Transformer‐Based Framework for High‐Accuracy Apple Disease Detection in Precision Agriculture

计算机科学 精准农业 变压器 农业 电气工程 工程类 生态学 生物 电压
作者
Song Wang,M. Liu,Sun Dong,Shiyu Chen
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:37 (23-24)
标识
DOI:10.1002/cpe.70276
摘要

ABSTRACT Apples are deeply favored by consumers for their crisp and sweet taste and play a significant role in agricultural production. However, apples often suffer from infections by various pathogens during their growth process, severely impacting fruit quality and yield, and subsequently causing economic losses. Therefore, timely detection and accurate intervention against diseases during apple growth are crucial for improving harvest management efficiency and economic benefits. Nonetheless, current research primarily focuses on the identification of single diseases, lacking multi‐disease detection capabilities. This limitation results in inadequate timeliness and accuracy in disease management, thereby restricting practical application effectiveness. Additionally, apple disease detection models need to balance high accuracy, rapid response, and lightweight design to reduce hardware costs and application thresholds. To address these challenges, this paper proposes a lightweight detection model named ERL‐RTDETR, which is based on RT‐DETR. First, a dataset containing 3096 images of apple‐leaf diseases was constructed, encompassing different camera angles, time spans, and lighting conditions in complex environments. Subsequently, by introducing an Efficient Multi‐scale Attention (EMA) mechanism and integrating it with the backbone network, we designed a new feature extraction module (BasicBlock_EMA) to enhance the capture of fine‐grained features. Meanwhile, in the neck network, the traditional convolutional module was replaced with a Lightweight Adaptive Extraction module (LAE), and a Generalized Efficient Lightweight Attention Network (GELAN) was introduced to optimize the convolutional blocks, thereby improving the model's training efficiency and detection performance for subtle targets. The construction of the ERL‐RTDETR model was completed while ensuring detection accuracy and reducing model complexity. Experimental results demonstrate that ERL‐RTDETR achieves a balanced performance in apple disease detection tasks, with a detection precision of 94.5% on the test set (a 3.2% improvement compared to RT‐DETR) and increases in mAP50 and mAP50:95 by 2.7% and 2.2%, respectively. Simultaneously, the GFLOPs were reduced by 5.9 GFLOPs (a decrease of 10.3% compared to RT‐DETR). In summary, the proposed ERL‐RTDETR model provides an efficient, lightweight, and accurate method for apple disease detection, serving as an important reference for research and practical applications in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助六六安安采纳,获得30
1秒前
2秒前
123完成签到,获得积分10
2秒前
坦率人杰完成签到,获得积分20
3秒前
科研通AI6应助圆圆努力中采纳,获得80
3秒前
烟花应助科研小学生采纳,获得10
5秒前
obedientsheep完成签到,获得积分10
5秒前
6秒前
rixinsu发布了新的文献求助10
6秒前
默默襄完成签到 ,获得积分10
6秒前
酷波er应助徐志豪采纳,获得10
6秒前
AAA建材收银完成签到,获得积分10
7秒前
Mottri给Mottri的求助进行了留言
7秒前
123完成签到 ,获得积分10
7秒前
NexusExplorer应助gsy采纳,获得10
7秒前
乐乐应助rixinsu采纳,获得10
9秒前
ASHhan111完成签到,获得积分10
9秒前
勤恳的竺发布了新的文献求助10
10秒前
12秒前
15秒前
淡淡元蝶完成签到 ,获得积分10
15秒前
LB应助AAA采纳,获得10
16秒前
共享精神应助姚序东采纳,获得10
19秒前
苹果果汁完成签到,获得积分10
20秒前
cdsd完成签到 ,获得积分10
20秒前
张振完成签到,获得积分10
21秒前
李健的小迷弟应助秀儿采纳,获得10
24秒前
目土土完成签到 ,获得积分10
24秒前
小坨坨完成签到,获得积分10
26秒前
wzgkeyantong完成签到,获得积分10
26秒前
希望天下0贩的0应助mayox采纳,获得10
26秒前
沉心静气搞学习完成签到 ,获得积分10
26秒前
27秒前
numagok完成签到,获得积分10
27秒前
科研小学生完成签到,获得积分10
29秒前
llllliu完成签到,获得积分10
30秒前
虚心的渊思完成签到 ,获得积分10
30秒前
姚序东发布了新的文献求助10
31秒前
Mottri驳回了LB应助
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5266138
求助须知:如何正确求助?哪些是违规求助? 4425873
关于积分的说明 13777711
捐赠科研通 4301727
什么是DOI,文献DOI怎么找? 2360517
邀请新用户注册赠送积分活动 1356455
关于科研通互助平台的介绍 1318004