The H5N1 algorithm: a viral-inspired optimization for solving real-world engineering problems

优化算法 算法 计算机科学 数学优化 数学
作者
T. Le-Xuan,Thanh Tien Bui,Hoa Tran-Ngoc
出处
期刊:Engineering Computations [Emerald (MCB UP)]
卷期号:42 (3): 1024-1096 被引量:2
标识
DOI:10.1108/ec-05-2024-0472
摘要

Purpose In recent years, the development of metaheuristic algorithms for solving optimization problems within a reasonable timeframe has garnered significant attention from the global scientific community. In this work, a new metaheuristic algorithm inspired by the inflection mechanism of the avian influenza virus H5N1 in poultry and humans, taking into account its mutation mechanism, called H5N1. Design/methodology/approach This algorithm aims to explore optimal solutions for optimization problems by simulating the adaptive behavior and evolutionary process of the H5N1 virus, thereby enhancing the algorithm’s performance for all types of optimization problems. Additionally, a balanced stochastic probability mechanism derived from the infection probability is presented. Using this mechanism, the H5N1 algorithm can change its phrase, including exploitation and exploration phases. Two versions of H5N1, SH5N1 and MH5N1, are presented to solve single-objective optimization problems (SOPs) and multi-objective optimization problems (MOPs). Findings The performance of the algorithm is evaluated using a set of benchmark functions, including seven unimodal, six multimodal, ten fixed-dimension multimodal to solve SOPs, ZDT functions and CEC2009 has been used to demonstrate its superiority over other recent algorithms. Finally, six optimization engineering problems have been tested. The results obtained indicate that the proposed algorithm outperformed ten algorithms in SOPs and seven algorithms in MOPs. Originality/value The experimental findings demonstrate the outstanding convergence of the H5N1 algorithm and its ability to generate solutions of superior quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李金奥发布了新的文献求助10
1秒前
1秒前
笑开口发布了新的文献求助10
1秒前
1秒前
555发布了新的文献求助10
1秒前
2秒前
2秒前
星辰大海应助hawaii66采纳,获得10
3秒前
果汁发布了新的文献求助50
3秒前
3秒前
xaiomeng发布了新的文献求助10
3秒前
bkagyin应助俭朴的雨安采纳,获得10
3秒前
小马甲应助解美霞采纳,获得10
4秒前
4秒前
Meya完成签到,获得积分10
4秒前
4秒前
4秒前
调皮的啤酒完成签到,获得积分10
5秒前
5秒前
王月完成签到,获得积分10
5秒前
5秒前
WWYYXX发布了新的文献求助10
5秒前
6秒前
JamesPei应助酷炫萃采纳,获得10
6秒前
6秒前
7秒前
7秒前
洁洁完成签到,获得积分10
7秒前
嘟嘟完成签到,获得积分10
8秒前
11111发布了新的文献求助10
8秒前
CodeCraft应助家里蹲高材生采纳,获得10
8秒前
所所应助xueshu采纳,获得10
8秒前
ymj完成签到,获得积分10
8秒前
科目三应助赵刘洁采纳,获得10
9秒前
学术纣王发布了新的文献求助10
9秒前
里里完成签到,获得积分10
9秒前
shine完成签到,获得积分10
9秒前
9秒前
GuShc完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731