Development of a Predictive Model for Persistent Dizziness Following Vestibular Schwannoma Surgery

医学 神经鞘瘤 前庭系统 回顾性队列研究 外科 放射科
作者
Krish Suresh,Mohamed Elkahwagi,Alejandro García,James G. Naples,C. Eduardo Corrales,Matthew G. Crowson
出处
期刊:Laryngoscope [Wiley]
卷期号:133 (12): 3534-3539 被引量:2
标识
DOI:10.1002/lary.30708
摘要

Objective In an era of vestibular schwannoma (VS) surgery where functional preservation is increasingly emphasized, persistent postoperative dizziness is a relatively understudied functional outcome. The primary objective was to develop a predictive model to identify patients at risk for developing persistent postoperative dizziness after VS resection. Methods Retrospective review of patients who underwent VS surgery at our institution with a minimum of 12 months of postoperative follow‐up. Demographic, tumor‐specific, preoperative, and immediate postoperative features were collected as predictors. The primary outcome was self‐reported dizziness at 3‐, 6‐, and 12‐month follow‐up. Binary and multiclass machine learning classification models were developed using these features. Results A total of 1,137 cases were used for modeling. The median age was 67 years, and 54% were female. Median tumor size was 2 cm, and the most common approach was suboccipital (85%). Overall, 63% of patients did not report postoperative dizziness at any timepoint; 11% at 3‐month follow‐up; 9% at 6‐months; and 17% at 12‐months. Both binary and multiclass models achieved high performance with AUCs of 0.89 and 0.86 respectively. Features important to model predictions were preoperative headache, need for physical therapy on discharge, vitamin D deficiency, and systemic comorbidities. Conclusion We demonstrate the feasibility of a machine learning approach to predict persistent dizziness following vestibular schwannoma surgery with high accuracy. These models could be used to provide quantitative estimates of risk, helping counsel patients on what to expect after surgery and manage patients proactively in the postoperative setting. Level of Evidence 4 Laryngoscope , 133:3534–3539, 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bling发布了新的文献求助10
刚刚
科研菜鸡完成签到 ,获得积分10
1秒前
x5kyi完成签到,获得积分10
1秒前
1秒前
呆小仙完成签到,获得积分10
1秒前
超级小狗完成签到,获得积分10
1秒前
2秒前
姜半兰完成签到,获得积分10
2秒前
leng发布了新的文献求助10
2秒前
充电宝应助gao采纳,获得10
3秒前
eryaclover完成签到,获得积分10
3秒前
一叶扁舟发布了新的文献求助20
3秒前
感性的道之完成签到 ,获得积分10
4秒前
达达发布了新的文献求助10
4秒前
鲍binyu完成签到,获得积分10
6秒前
情红锐完成签到,获得积分10
7秒前
7秒前
123321完成签到,获得积分10
7秒前
卡卡西应助随意采纳,获得20
7秒前
枵蕾完成签到,获得积分10
7秒前
7秒前
沉梦昂志_hzy完成签到,获得积分0
8秒前
黑妹发布了新的文献求助10
8秒前
8秒前
lxd完成签到,获得积分10
8秒前
大眼睛的草莓完成签到,获得积分10
8秒前
充电宝应助hjx采纳,获得10
9秒前
courage完成签到,获得积分10
9秒前
李健应助fcyyc采纳,获得10
9秒前
10秒前
10秒前
侯伯军发布了新的文献求助30
10秒前
whiter完成签到,获得积分10
11秒前
nanlinhua完成签到,获得积分10
11秒前
乐乐完成签到,获得积分10
12秒前
卜懂得完成签到,获得积分10
12秒前
紫杉罗罗完成签到,获得积分10
12秒前
TruelyBe发布了新的文献求助10
13秒前
彩虹天堂发布了新的文献求助10
13秒前
毕双洲发布了新的文献求助10
13秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820211
求助须知:如何正确求助?哪些是违规求助? 3363100
关于积分的说明 10420892
捐赠科研通 3081487
什么是DOI,文献DOI怎么找? 1695130
邀请新用户注册赠送积分活动 814901
科研通“疑难数据库(出版商)”最低求助积分说明 768567