Composite Data Driven-Based Adaptive Control for a Piezoelectric Linear Motor

控制理论(社会学) 控制器(灌溉) 自适应控制 直线电机 工程类 控制工程 非线性系统 噪音(视频) 计算机科学 控制(管理) 物理 人工智能 机械工程 量子力学 农学 图像(数学) 生物
作者
Yifan Wang,Miaolei Zhou,Dawei Hou,Wenjing Cao,Xiaoliang Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:6
标识
DOI:10.1109/tim.2022.3216412
摘要

Piezoelectric linear motors play an important role in ultraprecision manufacturing technology. However, the complex nonlinear relationship between the input and output of the piezoelectric linear motors limits their further application. In this article, to achieve precise motion control for a piezoelectric linear motor, a composite data-driven-based adaptive control method is proposed, consisting of a correction controller, model-free adaptive control (MFAC), and low pass filter. The proposed control method addresses the demand for a precise model of the piezoelectric linear motor and solely relies on the linear model and input–output measurement data. First, an experimental test is implemented to analyze the complex nonlinearity between the input and output signals of the controlled system, and a correction control is employed based on the dynamic linear sub-model of the piezoelectric linear motor to improve its dynamic and static characteristics. Then, to avoid the influence of unmodeled dynamics, such as inherent nonlinearity and external vibration, an MFAC is established as a feedback controller using data-driven technology. In addition, a low pass filter is incorporated into the feedback loop to eliminate high-frequency measurement noise in the system, thus improving the transient response of the MFAC method. Finally, the theoretical analysis of the error convergence is presented. The effectiveness of the proposed method is verified via comparisons with a correction control method, correction control-based digital sliding-mode control (DSMC) method, and correction control-based MFAC method. The experimental results indicate that the proposed control method is suitable for engineering applications. In particular, the root-mean-square error (RMSE) for the third-order S-curve tracking using the proposed is reduced by more than 15%, compared with the RMSEs for the cases with contrast control methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111完成签到 ,获得积分10
2秒前
3秒前
obsession完成签到,获得积分10
4秒前
mao应助请放心采纳,获得20
5秒前
paul发布了新的文献求助10
5秒前
6秒前
Hang完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
10秒前
动漫大师发布了新的文献求助10
10秒前
阿王发布了新的文献求助10
11秒前
可爱的函函应助01采纳,获得10
12秒前
13秒前
古炮发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助10
14秒前
狐八道发布了新的文献求助10
15秒前
zm完成签到,获得积分10
17秒前
阿王完成签到,获得积分10
17秒前
Singularity应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得30
18秒前
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
可cabd完成签到,获得积分10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
lily完成签到 ,获得积分10
20秒前
难过的元容完成签到,获得积分10
20秒前
22秒前
zm发布了新的文献求助10
22秒前
卤化氢完成签到 ,获得积分10
23秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826499
求助须知:如何正确求助?哪些是违规求助? 3368871
关于积分的说明 10452716
捐赠科研通 3088451
什么是DOI,文献DOI怎么找? 1699072
邀请新用户注册赠送积分活动 817272
科研通“疑难数据库(出版商)”最低求助积分说明 770130