Clinical evaluation of malignancy diagnosis of rare thyroid carcinomas by an artificial intelligent automatic diagnosis system

医学 恶性肿瘤 甲状腺结节 鉴别诊断 放射科 甲状腺癌 甲状腺 病理 内科学
作者
Yuan Wang,Lei Xu,Wenliang Lu,Xiangkai kong,Kaiyuan Shi,Liping Wang,Dexing Kong
出处
期刊:Endocrine [Springer Science+Business Media]
卷期号:80 (1): 93-99 被引量:11
标识
DOI:10.1007/s12020-022-03269-4
摘要

To evaluate the application value of a generally trained artificial intelligence (AI) automatic diagnosis system in the malignancy diagnosis of rare thyroid carcinomas, such as follicular thyroid carcinoma, medullary thyroid carcinoma, primary thyroid lymphoma and anaplastic thyroid carcinoma and compare the diagnostic performance with radiologists of different experience levels.We retrospectively studied 342 patients with 378 thyroid nodules that included 196 rare malignant nodules by using postoperative pathology as the gold standard, and compared the diagnostic performances of three radiologists (one junior, one mid-level, one senior) and that of AI automatic diagnosis system.The accuracy of the AI system in malignancy diagnosis was 0.825, which was significantly higher than that of all three radiologists and higher than the best radiologist in this study by a margin of 0.097 with P-value of 2.252 × 10-16. The mid-level radiologist and senior radiologist had higher sensitivity (0.857 and 0.959) than that of the AI system (0.847) at the cost of having much lower specificity (0.533, 0.478 versus 0.802). The junior radiologist showed relatively balanced sensitivity and specificity (0.816 and 0.549) but both were lower than that of the AI system.The generally trained AI automatic diagnosis system showed high accuracy in the differential diagnosis of begin nodules and rare malignancy nodules. It may assist radiologists for screening of rare malignancy nodules that even senior radiologists are not acquainted with.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助寻梦采纳,获得10
1秒前
4秒前
飞飞飞发布了新的文献求助10
5秒前
无辜绿竹完成签到,获得积分20
9秒前
天天快乐应助美满的天薇采纳,获得10
13秒前
去有风的地方完成签到 ,获得积分10
14秒前
18秒前
lss完成签到,获得积分10
19秒前
大个应助明亮无颜采纳,获得30
22秒前
去有风的地方关注了科研通微信公众号
22秒前
燕子完成签到,获得积分10
23秒前
24秒前
25秒前
26秒前
哆啦A梦完成签到,获得积分10
26秒前
晓晓晓发布了新的文献求助10
27秒前
朱大头发布了新的文献求助10
29秒前
31秒前
田様应助cdercder采纳,获得10
31秒前
无情的函发布了新的文献求助10
31秒前
666完成签到,获得积分10
32秒前
大陆完成签到,获得积分10
33秒前
huangshuishui关注了科研通微信公众号
33秒前
35秒前
科研通AI5应助Jonathan采纳,获得30
36秒前
美满的天薇完成签到,获得积分20
37秒前
monster发布了新的文献求助10
38秒前
心灵美千秋完成签到 ,获得积分10
39秒前
xx发布了新的文献求助10
40秒前
41秒前
懒123完成签到,获得积分10
42秒前
Ava应助monster采纳,获得10
43秒前
43秒前
Lazarus完成签到,获得积分10
44秒前
晓晓晓完成签到,获得积分10
46秒前
47秒前
学术神经发布了新的文献求助10
47秒前
48秒前
一只菜鸡发布了新的文献求助10
48秒前
倪瑞恒完成签到,获得积分10
49秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785749
求助须知:如何正确求助?哪些是违规求助? 3331166
关于积分的说明 10250472
捐赠科研通 3046615
什么是DOI,文献DOI怎么找? 1672143
邀请新用户注册赠送积分活动 801026
科研通“疑难数据库(出版商)”最低求助积分说明 759979