Domain Generalization-Based Dynamic Multiobjective Optimization: A Case Study on Disassembly Line Balancing

再制造 计算机科学 帕累托原理 多目标优化 数学优化 一般化 进化算法 人口 人工智能 机器学习 数学 工程类 机械工程 数学分析 社会学 人口学
作者
Yilin Fang,Fubo Liu,Miqing Li,Hao Cui
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1851-1865 被引量:23
标识
DOI:10.1109/tevc.2022.3233642
摘要

The objective of disassembly lines is to disassemble end-of-life products in a remanufacturing field. The disassembly line balancing problem (DLBP) considers how to allocate disassembly operations to operators on the disassembly line to optimize predetermined goals, such as cycle time. In practice, various environmental uncertainties (e.g., uncertain product quality) exist in the disassembly line. These uncertainties entail DLBP essentially a dynamic multiobjective optimization problem (DMOP). This study presents a dynamic DLBP (D-DLB) to model the effect of environmental uncertainties on the assignment of disassembly operations. Furthermore, a prediction-based dynamic optimization algorithm, termed domain generalization-based dynamic multiobjective evolutionary algorithm (DG-DMOEA), combining meta-learning with multiobjective optimization, is proposed to solve D-DLB. In DG-DMOEA, a meta-learning algorithm is employed to learn the parameters of a solution-generative model from the Pareto-optimal sets (POSs) in all historical environments. Subsequently, the solution-generative model is applied to generate a high-quality initial population that can assist multiobjective optimization algorithms in finding the POS in the new environment faster. Since no information in the new environment is required, learning can begin before the new environment arrives, significantly reducing computational time. Moreover, different solution-generative models can be designed for different DMOPs. Therefore, DG-DMOEA can thoroughly combine real-world problem properties to represent knowledge. The experimental results show that, compared with state-of-the-art methods, DG-DMOEA can considerably improve the quality of solutions and significantly enhance the ability to react quickly to environmental changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
howudoin完成签到,获得积分10
刚刚
刚刚
1秒前
鲤鱼平安应助美好冰蓝采纳,获得10
1秒前
Rochmannn发布了新的文献求助10
1秒前
赐梦完成签到 ,获得积分10
2秒前
冷静访梦完成签到,获得积分10
2秒前
TY完成签到,获得积分10
3秒前
罂粟发布了新的文献求助20
3秒前
xiaoyuyuyu完成签到 ,获得积分10
3秒前
ljy阿发布了新的文献求助90
4秒前
852应助王路飞采纳,获得10
4秒前
4秒前
5秒前
星星完成签到 ,获得积分10
5秒前
5秒前
5秒前
热情灵珊完成签到,获得积分10
5秒前
Pheonix1998完成签到,获得积分10
6秒前
重要代丝完成签到,获得积分10
6秒前
李健的小迷弟应助tyche采纳,获得10
7秒前
7秒前
不会失忆完成签到,获得积分10
7秒前
pluto应助袁月辉采纳,获得10
8秒前
羽茗完成签到,获得积分20
8秒前
李锋完成签到,获得积分10
8秒前
Xu完成签到,获得积分10
9秒前
小巧书雪完成签到,获得积分10
9秒前
阿翼发布了新的文献求助10
9秒前
加薪完成签到,获得积分10
9秒前
9秒前
高佳智发布了新的文献求助10
10秒前
Nina完成签到,获得积分10
10秒前
10秒前
小华安发布了新的文献求助30
11秒前
何木萧完成签到,获得积分10
11秒前
你好发布了新的文献求助10
12秒前
ywindm完成签到,获得积分10
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388179
求助须知:如何正确求助?哪些是违规求助? 4510159
关于积分的说明 14034562
捐赠科研通 4421062
什么是DOI,文献DOI怎么找? 2428561
邀请新用户注册赠送积分活动 1421212
关于科研通互助平台的介绍 1400459