Digital Twins Enabled On-Demand Matching for Multi-Task Federated Learning in HetVNets

匹配(统计) 计算机科学 任务(项目管理) 选择(遗传算法) 方案(数学) 利用 分布式计算 机器学习 人工智能 工程类 数学 计算机安全 统计 数学分析 系统工程
作者
Yilong Hui,Gaosheng Zhao,Changle Li,Nan Cheng,Zhisheng Yin,Tom H. Luan,Xiao Xiao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (2): 2352-2364 被引量:2
标识
DOI:10.1109/tvt.2022.3211005
摘要

In the heterogeneous vehicular networks (HetVNets), the roadside units (RUs) can exploit the massive amounts of valuable data collected by vehicles to complete federated learning tasks. However, most of the existing studies consider the scenario of one task requester (TR) and ignore the fact that multiple TRs may concurrently request their model training tasks in the HetVNets. In this paper, we consider the scenario of multi-TR and multi-RU and propose a digital twins (DT) enabled on-demand matching scheme for multi-task federated learning to address the two-way selection problem between TRs and RUs. Specifically, by jointly considering the diversified requirements of the TRs and the differentiated training capabilities of the RUs, we first design a DT enabled on-demand matching architecture to facilitate the multi-task federated learning in the HetVNets. Then, based on the personalized requirement of the DT of each TR (DT-TR), a marginal utility based vehicle selection mechanism is proposed to enable the DT of each RU (DT-RU) to determine the customized model training strategy. With the determined strategies, the two-way selection problem between the DT-TRs and the DT-RUs is formulated as an on-demand matching game in DT networks, where a matching algorithm is designed to obtain their optimal strategies. Simulation results demonstrate that the proposed scheme outperforms the conventional schemes in terms of training accuracy, performance-cost ratio (PCR), and task completion rate (TCR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizhiqian2024发布了新的文献求助10
刚刚
1秒前
1秒前
北阳完成签到,获得积分10
1秒前
星辰大海应助研友_LBaaX8采纳,获得10
1秒前
zzz发布了新的文献求助30
2秒前
情怀应助十一采纳,获得10
2秒前
泡泡完成签到,获得积分10
3秒前
北落发布了新的文献求助10
3秒前
Alexander完成签到,获得积分20
4秒前
腼腆的大白菜真实的钥匙完成签到,获得积分10
4秒前
方一完成签到,获得积分10
5秒前
5秒前
Hammerdai完成签到,获得积分10
6秒前
Alexander发布了新的文献求助10
6秒前
科研通AI5应助木木三采纳,获得10
7秒前
TOMMY233发布了新的文献求助10
8秒前
小张完成签到 ,获得积分10
8秒前
英姑应助tpsdxq采纳,获得10
10秒前
溪水哗哗完成签到,获得积分10
10秒前
10秒前
田様应助小费采纳,获得50
11秒前
安仔发布了新的文献求助10
11秒前
dongfang完成签到,获得积分20
11秒前
zhouqy8完成签到,获得积分10
11秒前
12秒前
13秒前
慕青应助伊可采纳,获得10
13秒前
岁末完成签到 ,获得积分10
14秒前
cyndi完成签到,获得积分0
14秒前
gulllluuuukk完成签到,获得积分10
15秒前
16秒前
79完成签到,获得积分10
16秒前
赤墨完成签到,获得积分10
16秒前
江璃发布了新的文献求助10
17秒前
17秒前
飞天817发布了新的文献求助10
19秒前
帅气面包完成签到,获得积分10
19秒前
梦巷完成签到,获得积分10
19秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786149
求助须知:如何正确求助?哪些是违规求助? 3331690
关于积分的说明 10252167
捐赠科研通 3047090
什么是DOI,文献DOI怎么找? 1672378
邀请新用户注册赠送积分活动 801270
科研通“疑难数据库(出版商)”最低求助积分说明 760110