Privacy Preserving Federated Learning Using CKKS Homomorphic Encryption

同态加密 计算机科学 加密 同态秘密共享 计算机安全 理论计算机科学 密码学 安全多方计算
作者
Fengyuan Qiu,Hao Yang,Lu Zhou,Chuan Ma,Liming Fang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 427-440 被引量:10
标识
DOI:10.1007/978-3-031-19208-1_35
摘要

With the rapid development of distributed machine learning and Internet of things, tons of distributed data created by devices are used for model training and what comes along is the concern of security and privacy. Traditional method of distributed machine learning asks devices to upload their raw data to a server, which may cause the privacy leakage. Federated learning mitigates this problem by sharing each devices’ model parameters only. However, it still has the risk of privacy leakage due to the weak security of model parameters. In this paper, we propose a scheme called privacy enhanced federated averaging (PE-FedAvg) to enhance the security of model parameters. By the way, our scheme achieves the same training effect as Fedavg do at the cost of extra but acceptable time and has better performances on communication and computation cost compared with Paillier based federated averaging. The scheme uses the CKKS homomorphic encryption to encrypt the model parameters, provided by detailed scheme design and security analysis. To verify the effectiveness of the proposed algorithm, extensive experiments are conducted in two real-life datasets, and shows the advantages on aspects of communication and computation. Finally, we discuss the feasibility of deployment on IoT devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助zll采纳,获得10
刚刚
1秒前
1秒前
谨慎冰海应助文件撤销了驳回
1秒前
2秒前
大模型应助风起时采纳,获得10
2秒前
3秒前
5秒前
科研通AI6应助南敏株采纳,获得10
5秒前
RON发布了新的文献求助10
5秒前
5秒前
活泼水桃完成签到,获得积分10
6秒前
HeAuBook举报LIUDEHUA求助涉嫌违规
6秒前
零琳发布了新的文献求助10
6秒前
Et3rnity完成签到,获得积分10
8秒前
8秒前
aaa发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
Jerrylove发布了新的文献求助10
10秒前
科研通AI5应助唠叨的锦程采纳,获得10
10秒前
寒冷猫咪发布了新的文献求助10
11秒前
zll发布了新的文献求助10
11秒前
13秒前
淡定的弘完成签到,获得积分10
13秒前
zxy完成签到,获得积分10
14秒前
自然冥幽发布了新的文献求助10
15秒前
九鹤发布了新的文献求助10
16秒前
16秒前
昏睡的代桃完成签到,获得积分10
17秒前
所所应助yulinhai采纳,获得10
17秒前
赘婿应助千云皆墨采纳,获得10
18秒前
勤奋夜安完成签到,获得积分10
18秒前
mitty发布了新的文献求助10
19秒前
19秒前
可乐加糖发布了新的文献求助10
19秒前
20秒前
HeAuBook举报我见春日明媚求助涉嫌违规
20秒前
LL完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941339
求助须知:如何正确求助?哪些是违规求助? 4207390
关于积分的说明 13077624
捐赠科研通 3986257
什么是DOI,文献DOI怎么找? 2182529
邀请新用户注册赠送积分活动 1198125
关于科研通互助平台的介绍 1110387