Duration and resource constraint prediction models for construction projects using regression machine learning method

持续时间(音乐) 约束(计算机辅助设计) 回归分析 回归 计算机科学 资源(消歧) 机器学习 人工智能 资源限制 工程类 运筹学 工业工程 数学 统计 机械工程 分布式计算 文学类 艺术 计算机网络
作者
Gopinath Selvam,Mohan Kamalanandhini,Muthuvel Velpandian,Sheema Shah
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
被引量:2
标识
DOI:10.1108/ecam-06-2023-0582
摘要

Purpose The construction projects are highly subjected to uncertainties, which result in overruns in time and cost. Realistic estimates of workforce and duration are imperative for construction projects to attain their intended objectives. The aim of this study is to provide accurate labor and duration estimates for the construction projects, considering actual uncertainties. Design/methodology/approach The dataset was formulated from the information collected from 186 construction projects through direct interviews, group discussions and questionnaire methods. The actual uncertainties and exposure conditions of construction activities were recorded. The data were verified with the standard guideline to remove the outliers. The prediction model was developed using support vector regression (SVR), a machine learning (ML) method. The performance was evaluated using the widely adopted regression metrics. Further, the cross validation was made with the visualization of residuals and predicted errors, ridge regression with transformed target distribution and a Gaussian Naive Bayes (NB) regressor. Findings The prediction models predicted the duration and labor requirements with the consideration of actual uncertainties. The residual plot indicated the appropriate use of SVR to develop the prediction model. The duration (DC) and resource constraint (RC) prediction models obtained 80 and 82% accuracy, respectively. Besides, the developed model obtained better accuracy for the training and test scores than the Gaussian NB regressor. Further, the range of the explained variance score and R 2 was from 0.95 to 0.97, indicating better efficiency compared with other prediction models. Research limitations/implications The researchers will utilize the research findings to estimate the duration and labor requirements under uncertain conditions and further improve the construction project management practices. Practical implications The research findings will enable industry practitioners to accurately estimate the duration and labor requirements, considering historical uncertain conditions. A precise estimation of resources will ensure the attainment of the intended project outcomes. Social implications Delays in construction projects will be reduced by implementing the research findings, which significantly ensures the effective utilization of resources and attainment of other economic benefits. The policymakers will develop a guideline to develop a database to collect the uncertainties of the construction projects and relatively estimate the resource requirements. Originality/value This is the first study to consider the actual uncertainties of construction projects to develop RC and DC prediction models. The developed prediction models accurately estimate the duration and labor requirements with minimal computational time. The industry practitioners will be able to accurately estimate the duration and labor requirements using the developed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子气泡水完成签到 ,获得积分10
1秒前
金小航发布了新的文献求助10
1秒前
热情的幻丝完成签到,获得积分10
2秒前
不辞完成签到,获得积分10
3秒前
3秒前
凡事发生必有利于我完成签到,获得积分10
7秒前
西早完成签到 ,获得积分10
8秒前
安详凡完成签到 ,获得积分10
8秒前
huaxuchina发布了新的文献求助10
8秒前
哭泣青烟完成签到 ,获得积分10
8秒前
gzj发布了新的文献求助10
9秒前
sen123完成签到,获得积分10
10秒前
11秒前
GAO完成签到,获得积分10
13秒前
gttlyb完成签到,获得积分10
13秒前
14秒前
14秒前
仿真小学生完成签到,获得积分10
15秒前
柳易槐完成签到,获得积分10
15秒前
16秒前
gzj关闭了gzj文献求助
16秒前
17秒前
SciGPT应助贝博采纳,获得10
17秒前
lllm发布了新的文献求助10
17秒前
兽医12138完成签到 ,获得积分10
17秒前
雪凝清霜应助科研通管家采纳,获得10
17秒前
sunshine应助科研通管家采纳,获得10
17秒前
LLY发布了新的文献求助10
17秒前
17秒前
17秒前
shrimp5215发布了新的文献求助10
19秒前
20秒前
赵李艺完成签到 ,获得积分10
21秒前
不知道取啥完成签到,获得积分10
22秒前
小二郎应助TJJJJJ采纳,获得10
23秒前
huaxuchina完成签到,获得积分10
23秒前
wbgwudi完成签到,获得积分10
23秒前
研都不研了完成签到 ,获得积分10
24秒前
林志伟完成签到 ,获得积分10
25秒前
ying完成签到,获得积分10
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379741
关于积分的说明 10510291
捐赠科研通 3099357
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615