EEG_DMNet: A Deep Multi-Scale Convolutional Neural Network for Electroencephalography-Based Driver Drowsiness Detection

脑电图 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 语音识别 心理学 神经科学
作者
Hanan Bin Obaidan,Muhammad Hussain,Reham S. Almajed
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (11): 2084-2084
标识
DOI:10.3390/electronics13112084
摘要

Drowsy driving is one of the major causes of traffic accidents, injuries, and deaths on roads worldwide. One of the best physiological signals that are useful in detecting a driver’s drowsiness is electroencephalography (EEG), a kind of brain signal that directly measures neurophysiological activities in the brain and is widely utilized for brain–computer interfaces (BCIs). However, designing a drowsiness detection method using EEG signals is still challenging because of their non-stationary nature. Deep learning, specifically convolutional neural networks (CNNs), has recently shown promising results in driver’s drowsiness. However, state-of-the-art CNN-based methods extract features sequentially and discard multi-scale spectral-temporal features, which are important in tackling the non-stationarity of EEG signals. This paper proposes a deep multi-scale convolutional neural network (EEG_DMNet) for driver’s drowsiness detection that learns spectral-temporal features. It consists of two main modules. First, the multi-scale spectral-temporal features are extracted from EEG trials using 1D temporal convolutions. Second, the spatial feature representation module calculates spatial patterns from the extracted multi-scale features using 1D spatial convolutions. The experimental results on the public domain benchmark SEED-VIG EEG dataset showed that it learns discriminative features, resulting in an average accuracy of 97.03%, outperforming the state-of-the-art methods that used the same dataset. The findings demonstrate that the proposed method effectively and efficiently detects drivers’ drowsiness based on EEG and can be helpful for safe driving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bo完成签到 ,获得积分10
1秒前
1秒前
pct发布了新的文献求助10
1秒前
星辰大海应助科研狂徒采纳,获得10
2秒前
乱武完成签到,获得积分10
2秒前
3秒前
shimmy完成签到,获得积分10
3秒前
阿尔卑斯完成签到,获得积分10
3秒前
3秒前
虚拟的惜筠完成签到,获得积分10
3秒前
4秒前
田様应助酒酿梅子采纳,获得10
4秒前
ygr完成签到,获得积分0
5秒前
Grace发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
huzj完成签到,获得积分10
6秒前
liangyong完成签到,获得积分10
6秒前
zsp完成签到,获得积分10
7秒前
8秒前
赘婿应助溪云采纳,获得10
8秒前
上官若男应助内向绮琴采纳,获得10
8秒前
8秒前
棒棒冰发布了新的文献求助10
8秒前
asdfg完成签到,获得积分10
9秒前
9秒前
9秒前
JamesPei应助小慧儿采纳,获得10
9秒前
9秒前
9秒前
9秒前
jon158发布了新的文献求助10
9秒前
9秒前
luoxuezhiyin发布了新的文献求助200
9秒前
9秒前
9秒前
9秒前
10秒前
欧阳半仙完成签到,获得积分10
10秒前
SYLH应助ee采纳,获得10
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808655
求助须知:如何正确求助?哪些是违规求助? 3353413
关于积分的说明 10365062
捐赠科研通 3069602
什么是DOI,文献DOI怎么找? 1685698
邀请新用户注册赠送积分活动 810656
科研通“疑难数据库(出版商)”最低求助积分说明 766240