Time history seismic response prediction of multiple homogeneous building structures using only one deep learning‐based Structure Temporal Fusion Network

同种类的 冗余(工程) 非线性系统 深度学习 计算机科学 人工神经网络 人工智能 结构工程 机器学习 工程类 数学 物理 量子力学 组合数学 操作系统
作者
Zuohua Li,Qitao Yang,Quanxue Deng,Yunxuan Gong,Deyuan Tian,Pengfei Su,Jun Teng
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (13): 4076-4098 被引量:4
标识
DOI:10.1002/eqe.4213
摘要

Abstract Structural response prediction under earthquakes is crucial for evaluating the structural performance and subsequent functional restoration. Deep learning provides the potential to rapidly obtain the responses by skipping the time‐consuming nonlinear finite element analysis. However, a single deep learning network may only predict the time history responses of one specific structure, resulting in redundancy and resource waste when building multiple networks for modeling different structures. Thus, this study proposes a Structure Temporal Fusion Network (STFN) that can predict responses of various homogeneous structures using a single network. The key concept is that the seismic waves and the structural characteristics, such as story numbers, are fused together to predict diverse time history responses. Two numeric experiments are conducted, including predicting responses of ideal single‐degree‐of‐freedom (SDOF) structures and regular multistory reinforced concrete frames. Furthermore, a series of ablation analyses are carried out to validate the network architecture. The results indicate that STFN can predict nonlinear time history responses of different structures with mean square errors in the magnitude of and for two experiments, respectively. The solutions also highlight the importance of fusing static characteristics for the modeling of various structures with only one network. The STFN presents a promising solution for time history response prediction across multiple structures in regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助谯殿艺采纳,获得10
刚刚
Ava应助谯殿艺采纳,获得10
刚刚
科研通AI5应助谯殿艺采纳,获得10
刚刚
zhaoyaoshi发布了新的文献求助10
刚刚
研友_LMBAXn发布了新的文献求助10
刚刚
张浩东发布了新的文献求助10
1秒前
桐桐应助碧蓝曲奇采纳,获得10
1秒前
1秒前
2秒前
Akim应助猫小树采纳,获得10
2秒前
lulu完成签到 ,获得积分10
2秒前
研友_alan完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
桐桐应助艾斯喜爱采纳,获得10
5秒前
云止发布了新的文献求助10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
xiaosun应助科研通管家采纳,获得20
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
庸人自扰完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5024658
求助须知:如何正确求助?哪些是违规求助? 4261640
关于积分的说明 13282520
捐赠科研通 4068751
什么是DOI,文献DOI怎么找? 2225424
邀请新用户注册赠送积分活动 1234165
关于科研通互助平台的介绍 1158139