Improving Ti Thin Film Resistance Deviations in Physical Vapor Deposition Sputtering for Dynamic Random-Access Memory Using Dynamic Taguchi Method, Artificial Neural Network and Genetic Algorithm

田口方法 薄膜 德拉姆 人工神经网络 材料科学 溅射 动态随机存取存储器 算法 遗传算法 计算机科学 机器学习 纳米技术 复合材料 光电子学 计算机硬件 半导体存储器
作者
Chia-Ming Lin,Shang-Liang Chen
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (17): 2688-2688
标识
DOI:10.3390/math12172688
摘要

Many dynamic random-access memory (DRAM) manufacturing companies encounter significant resistance value deviations during the PVD sputtering process for manufacturing Ti thin films. These resistance values are influenced by the thickness of the thin films. Current mitigation strategies focus on adjusting film thickness to reduce resistance deviations, but this approach affects product structure profile and performance. Additionally, varying Ti thin film thicknesses across different product structures increase manufacturing complexity. This study aims to minimize resistance value deviations across multiple film thicknesses with minimal resource utilization. To achieve this goal, we propose the TSDTM-ANN-GA framework, which integrates the two-stage dynamic Taguchi method (TSDTM), artificial neural networks (ANN), and genetic algorithms (GA). The proposed framework requires significantly fewer experimental resources than traditional full factorial design and grid search method, making it suitable for resource-constrained and low-power computing environments. Our TSDTM-ANN-GA framework successfully identified an optimal production condition configuration for five different Ti thin film thicknesses: Degas temperature = 245 °C, Ar flow = 55 sccm, DC power = 5911 W, and DC power ramp rate = 4009 W/s. The results indicate that the deviation between the resistance values and their design values for the five Ti thin film thicknesses decreased by 86.8%, 94.1%, 95.9%, 98.2%, and 98.8%, respectively. The proposed method effectively reduced resistance deviations for the five Ti thin film thicknesses and simplified manufacturing management, allowing the required design values to be achieved under the same manufacturing conditions. This framework can efficiently operate on resource-limited and low-power computers, achieving the goal of real-time dynamic production parameter adjustments and enabling DRAM manufacturing companies to improve product quality promptly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助机智的然然采纳,获得10
刚刚
王先进发布了新的文献求助10
1秒前
2秒前
Xu发布了新的文献求助10
3秒前
5秒前
5秒前
胖达完成签到 ,获得积分10
6秒前
6秒前
JokerSkye发布了新的文献求助10
7秒前
7秒前
7秒前
领导范儿应助乌拉拉采纳,获得10
8秒前
9秒前
10秒前
康康发布了新的文献求助10
10秒前
科研通AI2S应助huang采纳,获得10
11秒前
11秒前
咻咻发布了新的文献求助10
11秒前
合适尔蝶发布了新的文献求助10
12秒前
在水一方应助个性若冰采纳,获得10
12秒前
所所应助Ray采纳,获得10
13秒前
简单面包完成签到,获得积分10
13秒前
13秒前
完美世界应助牧笛采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
打打应助猫小乐C采纳,获得10
19秒前
lunar完成签到 ,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
22秒前
b11发布了新的文献求助10
24秒前
进击的巨人完成签到 ,获得积分10
24秒前
cjh关闭了cjh文献求助
24秒前
25秒前
bzlish发布了新的文献求助10
25秒前
27秒前
medmh完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799295
求助须知:如何正确求助?哪些是违规求助? 5798781
关于积分的说明 15499670
捐赠科研通 4925751
什么是DOI,文献DOI怎么找? 2651626
邀请新用户注册赠送积分活动 1598681
关于科研通互助平台的介绍 1553565