Comprehensive analysis of aging-related gene expression patterns and identification of potential intervention targets

孟德尔随机化 基因 计算生物学 基因表达 医学 衰老 生物信息学 表观遗传学 遗传学 生物 基因型 遗传变异
作者
Sha Yang,Jianning Song,Min Deng,Si Cheng
出处
期刊:Postgraduate Medical Journal [Oxford University Press]
标识
DOI:10.1093/postmj/qgae131
摘要

Abstract Purpose This study aims to understand the molecular mechanisms underlying the aging process and identify potential interventions to mitigate age-related decline and diseases. Methods This study utilized the GSE168753 dataset to conduct comprehensive differential gene expression analysis and co-expression module analysis. Machine learning and Mendelian randomization analyses were employed to identify core aging-associated genes and potential drug targets. Molecular docking simulations and mediation analysis were also performed to explore potential compounds and mediators involved in the aging process. Results The analysis identified 4164 differentially expressed genes, with 1893 upregulated and 2271 downregulated genes. Co-expression analysis revealed 21 modules, including both positively and negatively correlated modules between older age and younger age groups. Further exploration identified 509 aging-related genes with distinct biological functions. Machine learning and Mendelian randomization analyses identified eight core genes associated with aging, including DPP9, GNAZ, and RELL2. Molecular docking simulations suggested resveratrol, folic acid, and ethinyl estradiol as potential compounds capable of attenuating aging through modulation of RELL2 expression. Mediation analysis indicated that eosinophil counts and neutrophil count might act as mediators in the causal relationship between genes and aging-related indicators. Conclusion This comprehensive study provides valuable insights into the molecular mechanisms of aging and offers important implications for the development of anti-aging therapeutics. Key Messages What is already known on this topic – Prior research outlines aging’s complexity, necessitating precise molecular targets for intervention. What this study adds – This study identifies novel aging-related genes, potential drug targets, and therapeutic compounds, advancing our understanding of aging mechanisms. How this study might affect research, practice, or policy – Findings may inform targeted therapies for age-related conditions, influencing future research and clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦艽完成签到,获得积分10
1秒前
bewh发布了新的文献求助50
1秒前
幸福的保温杯完成签到,获得积分10
1秒前
1秒前
左彦完成签到,获得积分10
2秒前
科研混子完成签到,获得积分10
2秒前
有我ID随机吗完成签到,获得积分10
3秒前
W1ll完成签到,获得积分10
3秒前
elliot完成签到,获得积分10
3秒前
3秒前
3秒前
哄不好的南完成签到,获得积分10
4秒前
Majoe完成签到,获得积分10
4秒前
gao发布了新的文献求助20
5秒前
5秒前
所所应助xiaoou采纳,获得10
5秒前
贾文斌完成签到,获得积分10
5秒前
5秒前
要发核心刊的阿爽完成签到,获得积分10
5秒前
晓筠发布了新的文献求助10
6秒前
大果冻发布了新的文献求助10
6秒前
庚朝年完成签到 ,获得积分10
7秒前
善良安蕾完成签到,获得积分10
7秒前
今后应助饼饼采纳,获得10
7秒前
sunglow11完成签到,获得积分0
8秒前
平常芷蕾发布了新的文献求助10
8秒前
8秒前
扶苏发布了新的文献求助20
9秒前
xx完成签到,获得积分10
9秒前
充电宝应助ZS0901采纳,获得10
10秒前
11秒前
无名发布了新的文献求助10
12秒前
YiYi完成签到,获得积分10
12秒前
12秒前
11111发布了新的文献求助10
12秒前
13秒前
刚刚完成签到,获得积分10
13秒前
13秒前
14秒前
欧拉完成签到,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837974
求助须知:如何正确求助?哪些是违规求助? 3380164
关于积分的说明 10512727
捐赠科研通 3099729
什么是DOI,文献DOI怎么找? 1707202
邀请新用户注册赠送积分活动 821527
科研通“疑难数据库(出版商)”最低求助积分说明 772685