Continuous-time Object Segmentation using High Temporal Resolution Event Camera

人工智能 计算机视觉 计算机科学 分割 图像分割 事件(粒子物理) 图像分辨率 对象(语法) 目标检测 模式识别(心理学) 物理 量子力学
作者
Lin Zhu,Xianzhang Chen,Lizhi Wang,Xiao Wang,Yonghong Tian,Hua Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3477591
摘要

Event cameras are novel bio-inspired sensors, where individual pixels operate independently and asynchronously, generating intensity changes as events. Leveraging the microsecond resolution (no motion blur) and high dynamic range (compatible with extreme light conditions) of events, there is considerable promise in directly segmenting objects from sparse and asynchronous event streams in various applications. However, different from the rich cues in video object segmentation, it is challenging to segment complete objects from the sparse event stream. In this paper, we present the first framework for continuous-time object segmentation from event stream. Given the object mask at the initial time, our task aims to segment the complete object at any subsequent time in event streams. Specifically, our framework consists of a Recurrent Temporal Embedding Extraction (RTEE) module based on a novel ResLSTM, a Cross-time Spatiotemporal Feature Modeling (CSFM) module which is a transformer architecture with long-term and short-term matching modules, and a segmentation head. The historical events and masks (reference sets) are recurrently fed into our framework along with current-time events. The temporal embedding is updated as new events are input, enabling our framework to continuously process the event stream. To train and test our model, we construct both real-world and simulated event-based object segmentation datasets, each comprising event streams, APS images, and object annotations. Extensive experiments on our datasets demonstrate the effectiveness of the proposed recurrent architecture. Our code and dataset are available at https://sites.google.com/view/ecos-net/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
镜哥发布了新的文献求助10
1秒前
胡桃完成签到,获得积分10
1秒前
2秒前
zzzhu发布了新的文献求助10
2秒前
Orange应助12345789采纳,获得10
4秒前
4秒前
5秒前
如意纸鹤完成签到 ,获得积分10
5秒前
思源应助不安映雁采纳,获得10
6秒前
WittingGU完成签到,获得积分0
8秒前
夏之茗完成签到,获得积分10
8秒前
9秒前
脑洞疼应助134采纳,获得10
9秒前
半夏发布了新的文献求助10
9秒前
风中梦蕊发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
Akim应助威尔逊2采纳,获得10
14秒前
nteicu发布了新的文献求助10
15秒前
wy完成签到,获得积分10
16秒前
134完成签到,获得积分10
16秒前
16秒前
yinzi完成签到,获得积分10
16秒前
孤独君浩发布了新的文献求助10
17秒前
鲤鱼初柳发布了新的文献求助10
18秒前
英姑应助露露采纳,获得20
18秒前
ll完成签到,获得积分20
18秒前
19秒前
小八发布了新的文献求助10
19秒前
20秒前
十丶年完成签到,获得积分10
20秒前
white发布了新的文献求助10
20秒前
21秒前
21秒前
研友_Zl1Da8发布了新的文献求助10
21秒前
23秒前
笑眯眯发布了新的文献求助10
24秒前
高分求助中
The world according to Garb 600
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822419
求助须知:如何正确求助?哪些是违规求助? 3364793
关于积分的说明 10432887
捐赠科研通 3083626
什么是DOI,文献DOI怎么找? 1696353
邀请新用户注册赠送积分活动 815728
科研通“疑难数据库(出版商)”最低求助积分说明 769255