Modeling and optimization of composting technology

堆肥 处置模式 废物管理 废弃物 机械生物处理 原材料 肥料 环境科学 工程类 废物处理 废物收集 化学 生态学 生物 有机化学
作者
Zhaoyu Wang,Jianwen Xie,Han Ye,Hang Zhao,Mengxiang Zhao,Quan Wang
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 97-126
标识
DOI:10.1016/b978-0-323-91874-9.00005-x
摘要

How to efficiently dispose of and utilize organic waste such as sewage sludge, green waste, food waste and livestock manure is a crucial issue to develop a healthy ecosystem. Composting technology has been used to treat organic waste and produce a high-valued byproduct. However, the inevitable harmful gases emissions, low efficiency of organic matter transformation, low quality of compost and high mobility of heavy metals have restricted the popularization and application of composting technology. During the last decades, many practical methods have been put forward to improve the composting and decrease the adverse effects. While, the performance of composting is closely related to the raw materials, composting scale, reactor and technological parameters, resulting in the results obtained from the pilot- and laboratory-scale composting cannot be reproduced in full scale composting. Although full-scale composting is closer to reality, it is difficult to control and use more resources. Composting modeling offers the potential to reduce or even replace the need for physical experiment and is also beneficial for reducing resource and time waste. Various kinds of composting models (e.g., physical model, mathematical model, and neural network) were built up to predict composting performance, understand the composting process, discover new theoretical concepts, and solve the composting practical problems. However, with the development of society and economy, there are new problems that occurred during the composting and new models need to be proposed to solve these problems. Understanding the basic concept and principle of composting models is important to modeling and optimization of composting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小菜狗完成签到,获得积分10
刚刚
学渣小林发布了新的文献求助10
1秒前
挽风完成签到,获得积分10
1秒前
天天快乐应助咕噜咕噜采纳,获得10
1秒前
1秒前
Bin_Liu发布了新的文献求助10
2秒前
5秒前
飞飞飞发布了新的文献求助10
5秒前
9秒前
啤酒人完成签到 ,获得积分10
9秒前
2251877528发布了新的文献求助10
10秒前
10秒前
万能图书馆应助背后瑾瑜采纳,获得10
11秒前
12秒前
Hello应助Simonking采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
cdercder应助科研通管家采纳,获得20
14秒前
zzz发布了新的文献求助10
14秒前
2251877528完成签到,获得积分10
16秒前
林梓发布了新的文献求助10
17秒前
闪闪的妙竹完成签到 ,获得积分10
18秒前
迷路的朋友完成签到,获得积分10
18秒前
崔宁宁完成签到 ,获得积分10
19秒前
烟花应助都是采纳,获得10
19秒前
李白乘完成签到 ,获得积分10
21秒前
科研小菜狗关注了科研通微信公众号
22秒前
情怀应助Simonking采纳,获得10
23秒前
26秒前
钦影发布了新的文献求助10
26秒前
冷艳的竺完成签到,获得积分10
27秒前
28秒前
chen完成签到,获得积分10
29秒前
29秒前
30秒前
小莫发布了新的文献求助10
31秒前
灵巧慕凝完成签到,获得积分10
32秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816942
求助须知:如何正确求助?哪些是违规求助? 3360342
关于积分的说明 10407653
捐赠科研通 3078322
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 814001
科研通“疑难数据库(出版商)”最低求助积分说明 767958