Multi-task generative adversarial network for retinal optical coherence tomography image denoising

光学相干层析成像 计算机科学 散斑噪声 人工智能 降噪 计算机视觉 分割 噪音(视频) 任务(项目管理) 模式识别(心理学) 斑点图案 图像(数学) 医学 眼科 经济 管理
作者
Qiaoxue Xie,Zongqing Ma,Lianqing Zhu,Fan Fan,Xiaochen Meng,Xinxiao Gao,Jiang Zhu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (4): 045002-045002 被引量:9
标识
DOI:10.1088/1361-6560/ac944a
摘要

Objective. Optical coherence tomography (OCT) has become an essential imaging modality for the assessment of ophthalmic diseases. However, speckle noise in OCT images obscures subtle but important morphological details and hampers its clinical applications. In this work, a novel multi-task generative adversarial network (MGAN) is proposed for retinal OCT image denoising.Approach. To strengthen the preservation of retinal structural information in the OCT denoising procedure, the proposed MGAN integrates adversarial learning and multi-task learning. Specifically, the generator of MGAN simultaneously undertakes two tasks, including the denoising task and the segmentation task. The segmentation task aims at the generation of the retinal segmentation map, which can guide the denoising task to focus on the retina-related region based on the retina-attention module. In doing so, the denoising task can enhance the attention to the retinal region and subsequently protect the structural detail based on the supervision of the structural similarity index measure loss.Main results. The proposed MGAN was evaluated and analyzed on three public OCT datasets. The qualitative and quantitative comparisons show that the MGAN method can achieve higher image quality, and is more effective in both speckle noise reduction and structural information preservation than previous denoising methods.Significance. We have presented a MGAN for retinal OCT image denoising. The proposed method provides an effective way to strengthen the preservation of structural information while suppressing speckle noise, and can promote the OCT applications in the clinical observation and diagnosis of retinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助RedPanda采纳,获得10
刚刚
1秒前
2秒前
唐尔曼发布了新的文献求助10
2秒前
小二郎应助Sun采纳,获得10
3秒前
深情安青应助lu采纳,获得10
3秒前
acuter发布了新的文献求助10
3秒前
3秒前
活泼的寄风完成签到,获得积分10
3秒前
感动依霜发布了新的文献求助50
4秒前
5秒前
乔垣结衣应助YuanL采纳,获得10
5秒前
6秒前
6秒前
吞吞完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
陈一发布了新的文献求助20
9秒前
10秒前
10秒前
zzw发布了新的文献求助20
10秒前
10秒前
你为什么不学习完成签到 ,获得积分10
11秒前
zyt发布了新的文献求助10
11秒前
dawnshea应助CC采纳,获得10
11秒前
今后应助jason70采纳,获得10
11秒前
12秒前
111完成签到,获得积分20
13秒前
13秒前
13秒前
wangnn完成签到,获得积分10
13秒前
爱听歌的青筠完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
英姑应助哈哈采纳,获得10
14秒前
果粒橙应助marxing采纳,获得10
15秒前
15秒前
Tina完成签到,获得积分10
15秒前
聪明的哈密瓜完成签到,获得积分10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Apiaceae Himalayenses. 2 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239197
求助须知:如何正确求助?哪些是违规求助? 3772920
关于积分的说明 11848818
捐赠科研通 3428754
什么是DOI,文献DOI怎么找? 1881756
邀请新用户注册赠送积分活动 933920
科研通“疑难数据库(出版商)”最低求助积分说明 840611