Material Development of the Lgps Based Solid Electrolytes — Structure, Conductivity and Battery Characteristics

离子电导率 快离子导体 电解质 电池(电) 电导率 电化学 锂(药物) 材料科学 锂电池 离子 离子键合 化学工程 化学 电极 物理化学 热力学 有机化学 医学 功率(物理) 物理 工程类 内分泌学
作者
Ryoji Kanno,Yuki Kato,Ohmin Kwon,Kota Suzuki,Masaaki Hirayama,Masao Yonemura
出处
期刊:Meeting abstracts 卷期号:MA2014-04 (4): 749-749
标识
DOI:10.1149/ma2014-04/4/749
摘要

Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Although the advantages of non-flammable solid electrolytes are widely acknowledged, their low ionic conductivities and low chemical and electrochemical stabilities prevent them from being used in practical applications. The new lithium superionic conductor, Li 10 GeP 2 S 12 (LGPS) exhibits an extremely high bulk conductivity of over 10 -2 S cm -1 at room temperature (27 °C), and is a potential electrolyte candidate for an all solid-state battery [1]. In order to explore the material variety of the LGPS based electrolytes, solid solutions of the pseudo binary Li 4 GeS 4 – Li 3 PS 4 system were investigated. In addition, the new material systems were synthesized with the cation and/or anion substitutions (Si, Ge, Sn, O etc). The solid solution was synthesized for the LGPS parent phase in the binary system, and the conductivity varied with the lithium composition. The structures were determined by X-ray and neutron diffraction analyses, and the relationship between the ionic conduction and structures was clarified. The ionic conductivity and electrochemical stability varied with the compositions examined by the cation and/or anion substitutions. Battery performances using these LGPS systems were investigated. Based on the materials varieties and the battery performances using the LGPS electrolytes, the advantages of the all solid-state batteries will be discussed. Reference [1] N. Kamaya et al., Nat Mater , 10 , 682-686 (2011).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助悦耳曼凝采纳,获得10
刚刚
坚定惜梦发布了新的文献求助10
刚刚
1秒前
科研通AI5应助困困鱼采纳,获得10
2秒前
充电宝应助李里哩采纳,获得10
2秒前
2秒前
颗粒完成签到,获得积分10
5秒前
拉姆达完成签到 ,获得积分20
6秒前
6秒前
xzy998应助samllcloud采纳,获得10
7秒前
我是老大应助祝雲采纳,获得10
8秒前
深情安青应助qiqi1111采纳,获得10
8秒前
krsL完成签到,获得积分10
8秒前
卡皮巴拉发布了新的文献求助10
9秒前
9秒前
9秒前
MMMMM应助义气的采文采纳,获得30
10秒前
风的忧伤发布了新的文献求助10
10秒前
Gqx发布了新的文献求助10
10秒前
10秒前
11秒前
善学以致用应助Rcls_Wy采纳,获得10
11秒前
11秒前
华仔应助幽壑之潜蛟采纳,获得10
12秒前
任婷完成签到,获得积分10
13秒前
小马甲应助丁娜采纳,获得30
13秒前
千堆雪发布了新的文献求助10
13秒前
科研通AI2S应助fanfan采纳,获得10
13秒前
14秒前
15秒前
天天快乐应助梦想采纳,获得10
15秒前
15秒前
鳗鱼思松完成签到,获得积分10
15秒前
Robert发布了新的文献求助10
16秒前
852应助外向访卉采纳,获得10
17秒前
17秒前
zbz发布了新的文献求助10
17秒前
18秒前
handsomecat完成签到,获得积分10
18秒前
任婷发布了新的文献求助10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4187596
求助须知:如何正确求助?哪些是违规求助? 3723508
关于积分的说明 11732655
捐赠科研通 3401070
什么是DOI,文献DOI怎么找? 1866368
邀请新用户注册赠送积分活动 923106
科研通“疑难数据库(出版商)”最低求助积分说明 834407