析氧
过电位
塔菲尔方程
催化作用
尖晶石
氧化物
材料科学
化学工程
热稳定性
分解水
纳米技术
石墨烯
金属
无机化学
层状双氢氧化物
氧气
化学
电子结构
活动站点
纳米片
作者
Huacheng Jin,Yu Nan,Yefan Liu,Qianqiao Chen,Qin Zhong
出处
期刊:Langmuir
[American Chemical Society]
日期:2026-01-21
标识
DOI:10.1021/acs.langmuir.5c04446
摘要
Exposing catalytically active sites and modulating the electronic structure of active metals are key strategies for enhancing oxygen evolution reaction (OER) performance. Leveraging the tunable interlayer anions in layered double hydroxides, we developed a scalable synthesis of high-performance OER catalysts consisting of FeNiCo spinel oxide and high-valence metal oxides (MoO3, WO3, CrO3, V2O5). This approach integrates separate nucleation/aging steps, transition-metal oxyanion intercalation, and thermal oxidation. The resulting defect-rich ultrathin oxide nanosheets precisely regulate the electronic structure of active sites, shifting the rate-determining step (O* → OOH*) to improve the OER thermodynamics. These catalysts outperform commercial RuO2 in both activity and stability. Remarkably, FeNiCoO4/MoO3 achieves a current density of 50 mA cm-2 at an overpotential of just 238 mV with a Tafel slope of 41.12 mV dec-1, exceeding all reported powder-based oxide OER catalysts. It also demonstrates an excellent 100 h stability at 50 mA cm-2. This work provides a universal and scalable platform for designing efficient OER electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI