材料科学
纳米纤维
离子运输机
纳米技术
功率密度
离子
化学工程
纳米片
能量转换
光热治疗
能量转换效率
离子键合
整改
光电子学
电流密度
渗透力
纳米材料
反向电渗析
异质结
光热效应
超级电容器
选择性
离子交换
作者
Yuting Li,Xiang Liu,Mingxue Xiang,Peiduo Zhao,Yu Wang
标识
DOI:10.1002/adfm.202519748
摘要
Abstract Osmotic energy that harnessed from salinity gradients at river‐sea interfaces represents an abundant renewable source, yet its exploitation is limited by the critical trade‐off between ion selectivity and permeability of ion‐exchange nanofluidic membranes. Herein, a Ti 2 AlC MAX phase derived photothermal nanofiber scaffolds integrated with 2D MXene nanosheet assembly is designed onto address this challenge. This design emphasized the mechanical robustness and reduced ion transport resistance of MAX phase nanofiber membrane, simultaneously utilized the exceptional cation selectivity of MXene, enabling >90% osmotic power density retention over 30 days. The heterostructure provides interfacial charge asymmetry to induce ionic current rectification that enhancing cation transport and suppressing concentration polarization, reaching a peak power density of 30.6 W m −2 for miniaturized systems (0.03 mm 2 ) and maintained 0.25 W m −2 for large‐area modules (7800 mm 2 ). Furthermore, the photothermal response of MTM enabled solar‐driven ion transport acceleration, increasing power output by 55% under illumination without physical contact. This structural‐material synergy thus provided a capable solution between laboratory research and real‐world applications, establishing a viable pathway for sustainable blue energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI