Optimizing L-Tryptophan Production in Escherichia coli through Redox Balancing and Metabolomics Analysis

莽草酸途径 发酵 代谢工程 芳香族氨基酸 代谢组学 化学 生物化学 氧化还原 色氨酸 代谢途径 氨基酸 生化工程 瓶颈 生物技术 代谢组 戒毒(替代医学) 代谢通量分析 新陈代谢 工业发酵 莽草酸 生产(经济) 微生物代谢 可持续生产 碳纤维
作者
T. S. K. Wan,Dongqin Ding,J Chen,Yaru Zhu,H. Wang,Zhaoyu Xu,Junlin Yang,Yufeng Wang,Jia Song,Dawei Zhang
出处
期刊:Journal of Microbiology and Biotechnology [Journal of Microbiology and Biotechnology]
卷期号:35: e2508025-e2508025
标识
DOI:10.4014/jmb.2508.08025
摘要

L-tryptophan (L-trp) is a key aromatic amino acid with significant industrial value, and microbial fermentation provides a sustainable alternative to traditional chemical synthesis. However, low production yields due to inefficient microbial strains remain a major challenge. In this study, we enhanced L-trp production through redox engineering of Escherichia coli TX1. Metabolomics analysis at various fermentation stages revealed dynamic changes in the metabolites of the aromatic amino acid pathway. A key bottleneck was identified in the shikimate pathway, where significant accumulation of chorismate and shikimate led to inefficient L-trp production. By optimizing the shikimate pathway, L-trp production was increased by 19.8%. Additionally, the continuous accumulation of phosphoenolpyruvate suggested a limitation in the supply of erythrose-4-phosphate, which participates in the same reaction. Redirecting carbon flux from fructose-6-phosphate toward erythrose-4-phosphate increased the precursor pool of erythrose-4-phosphate. To overcome nutritional limitations, exogenous addition of amino acids, vitamins, and salt ions to the fermentation medium was implemented. Systematic metabolic engineering and fermentation optimization led to a significant improvement in tryptophan production, achieving an 86.6% increase compared to the original level. This study lays a solid foundation for the future development of more efficient tryptophan-producing strains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
秦秦给秦秦的求助进行了留言
刚刚
刚刚
Ava应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
杨杨应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
杨杨应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
杨杨应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
清秀的金鱼应助科研通管家采纳,获得100
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
niNe3YUE应助超帅悟空采纳,获得10
2秒前
英俊的铭应助超帅悟空采纳,获得10
2秒前
zgsdn发布了新的文献求助10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777921
求助须知:如何正确求助?哪些是违规求助? 5636658
关于积分的说明 15447224
捐赠科研通 4909858
什么是DOI,文献DOI怎么找? 2641972
邀请新用户注册赠送积分活动 1589855
关于科研通互助平台的介绍 1544362