转甲状腺素
医学
多发性神经病
病理
腓肠神经
感觉系统
感觉神经
淀粉样变性
外周神经系统
周围神经病变
淀粉样蛋白(真菌学)
变性(医学)
运动神经
遗传性运动和感觉神经病
神经科学
解剖
中枢神经系统
疾病
内科学
内分泌学
生物
糖尿病
作者
Hung‐Wei Kan,Hou‐Yu Chiang,Lin Wan,I-Shing Yu,Sen Lin,Sung‐Tsang Hsieh
摘要
Sensory nerve degeneration and consequent abnormal sensations are the earliest and most prevalent manifestations of familial amyloid polyneuropathy (FAP) due to amyloidogenic transthyretin (TTR). FAP is a relentlessly progressive degenerative disease of the peripheral nervous system. However, there is a lack of mouse models to replicate the early neuropathic manifestations of FAP.We established human TTR knock-in mice by replacing one allele of the mouse Ttr locus with human wild-type TTR (hTTRwt ) or human TTR with the A97S mutation (hTTRA97S ). Given the late onset of neuropathic manifestations in A97S-FAP, we investigated nerve pathology, physiology, and behavioural tests in these mice at two age points: the adult group (8 - 56 weeks) and the ageing group (> 104 weeks).In the adult group, nerve profiles, neurophysiology and behaviour were similar between hTTRwt and hTTRA97S mice. By contrast, ageing hTTRA97S mice showed small fibre neuropathy with decreased intraepidermal nerve fibre density and behavioural signs of mechanical allodynia. Furthermore, significant reductions in sural nerve myelinated nerve fibre density and sensory nerve action potential amplitudes in these mice indicated degeneration of large sensory fibres. The unaffected motor nerve physiology replicated the early symptoms of FAP patients, that is, sensory nerves were more vulnerable to mutant TTR than motor nerves.These results demonstrate that the hTTRA97S mouse model develops sensory nerve pathology and corresponding physiology mimicking A97S-FAP and provides a platform to develop new therapies for the early stage of A97S-FAP.
科研通智能强力驱动
Strongly Powered by AbleSci AI