FibroGENE: A gene-based model for staging liver fibrosis

医学 肝硬化 纤维化 内科学 接收机工作特性 队列 胃肠病学 慢性肝病 脂肪肝 肝病 慢性肝炎 肝纤维化 肝纤维化 疾病 免疫学 病毒
作者
Mohammed Eslam,Ahmed M. Hashem,Manuel Romero–Gómez,Thomas Berg,Gregory J. Dore,Alessandra Mangia,Henry Chan,William L. Irving,David Sheridan,Maria Lorena Abate,Leon A. Adams,Martin Weltman,Elisabetta Bugianesi,Ulrich Spengler,Olfat Shaker,Janett Fischer,Lindsay Mollison,Wendy Cheng,Jacob Nattermann,Stephen M. Riordan,Luca Miele,Kebitsaone Simon Kelaeng,Javier Ampuero,Golo Ahlenstiel,Duncan McLeod,Elizabeth E. Powell,Christopher Liddle,Mark W. Douglas,David R. Booth,Jacob George
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:64 (2): 390-398 被引量:66
标识
DOI:10.1016/j.jhep.2015.11.008
摘要

The extent of liver fibrosis predicts long-term outcomes, and hence impacts management and therapy. We developed a non-invasive algorithm to stage fibrosis using non-parametric, machine learning methods designed for predictive modeling, and incorporated an invariant genetic marker of liver fibrosis risk.Of 4277 patients with chronic liver disease, 1992 with chronic hepatitis C (derivation cohort) were analyzed to develop the model, and subsequently validated in an independent cohort of 1242 patients. The model was assessed in cohorts with chronic hepatitis B (CHB) (n=555) and non-alcoholic fatty liver disease (NAFLD) (n=488). Model performance was compared to FIB-4 and APRI, and also to the NAFLD fibrosis score (NFS) and Forns' index, in those with NAFLD.Significant fibrosis (⩾F2) was similar in the derivation (48.4%) and validation (47.4%) cohorts. The FibroGENE-DT yielded the area under the receiver operating characteristic curve (AUROCs) of 0.87, 0.85 and 0.804 for the prediction of fast fibrosis progression, cirrhosis and significant fibrosis risk, respectively, with comparable results in the validation cohort. The model performed well in NAFLD and CHB with AUROCs of 0.791, and 0.726, respectively. The negative predictive value to exclude cirrhosis was>0.96 in all three liver diseases. The AUROC of the FibroGENE-DT performed better than FIB-4, APRI, and NFS and Forns' index in most comparisons.A non-invasive decision tree model can predict liver fibrosis risk and aid decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助风中的跳跳糖采纳,获得10
5秒前
深情安青应助Nanami24采纳,获得10
5秒前
生医工小学生应助小张123采纳,获得10
6秒前
11秒前
wanci应助震动的强炫采纳,获得10
12秒前
14秒前
水若琳完成签到,获得积分10
16秒前
小静发布了新的文献求助100
16秒前
小张123完成签到,获得积分10
19秒前
丘比特应助称心寒松采纳,获得10
19秒前
vivia发布了新的文献求助10
20秒前
喝可乐的萝卜兔完成签到 ,获得积分10
21秒前
满意的柏柳完成签到,获得积分10
21秒前
21秒前
22秒前
Danny发布了新的文献求助10
22秒前
QL发布了新的文献求助10
22秒前
pluto应助芝士雪豹采纳,获得10
23秒前
小梦给小梦的求助进行了留言
23秒前
24秒前
24秒前
TTOM发布了新的文献求助10
26秒前
欣喜念梦发布了新的文献求助10
27秒前
宫跃然发布了新的文献求助20
27秒前
科研通AI5应助榴莲小胖采纳,获得30
27秒前
28秒前
称心寒松发布了新的文献求助10
28秒前
annis完成签到,获得积分10
29秒前
凄惨惨戚完成签到,获得积分10
29秒前
323发布了新的文献求助10
29秒前
30秒前
31秒前
凄惨惨戚发布了新的文献求助10
33秒前
Nanami24发布了新的文献求助10
33秒前
34秒前
Ava应助小静采纳,获得10
34秒前
Jasper应助七田皿采纳,获得10
35秒前
科研的狗发布了新的文献求助10
35秒前
song发布了新的文献求助10
36秒前
高分求助中
The world according to Garb 600
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822363
求助须知:如何正确求助?哪些是违规求助? 3364752
关于积分的说明 10432717
捐赠科研通 3083578
什么是DOI,文献DOI怎么找? 1696281
邀请新用户注册赠送积分活动 815704
科研通“疑难数据库(出版商)”最低求助积分说明 769255