已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A method for the identification of COVID-19 biomarkers in human breath using Proton Transfer Reaction Time-of-Flight Mass Spectrometry

假阳性悖论 医学 2019年冠状病毒病(COVID-19) 质谱法 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 大规模伤亡 气体分析呼吸 真阳性率 色谱法 人工智能 内科学 计算机科学 医疗急救 化学 疾病 传染病(医学专业) 解剖
作者
Aikaterini Liangou,Antonios Tasoglou,Heinz Huber,Christopher Wistrom,Kevin Brody,Prahlad G. Menon,Thomas Bebekoski,Kevin Menschel,Marlise Davidson-Fiedler,Karl DeMarco,Harshad Salphale,Jonathan L. Wistrom,Skyler L. Wistrom,Richard J. Lee
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:42: 101207-101207 被引量:36
标识
DOI:10.1016/j.eclinm.2021.101207
摘要

COVID-19 has caused a worldwide pandemic, making the early detection of the virus crucial. We present an approach for the determination of COVID-19 infection based on breath analysis.A high sensitivity mass spectrometer was combined with artificial intelligence and used to develop a method for the identification of COVID-19 in human breath within seconds. A set of 1137 positive and negative subjects from different age groups, collected in two periods from two hospitals in the USA, from 26 August, 2020 until 15 September, 2020 and from 11 September, 2020 until 11 November, 2020, was used for the method development. The subjects exhaled in a Tedlar bag, and the exhaled breath samples were subsequently analyzed using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The produced mass spectra were introduced to a series of machine learning models. 70% of the data was used for these sub-models' training and 30% was used for testing.A set of 340 samples, 95 positives and 245 negatives, was used for the testing. The combined models successfully predicted 77 out of the 95 samples as positives and 199 out of the 245 samples as negatives. The overall accuracy of the model was 81.2%. Since over 50% of the total positive samples belonged to the age group of over 55 years old, the performance of the model in this category was also separately evaluated on 339 subjects (170 negative and 169 positive). The model correctly identified 166 out of the 170 negatives and 164 out of the 169 positives. The model accuracy in this case was 97.3%.The results showed that this method for the identification of COVID-19 infection is a promising tool, which can give fast and accurate results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee发布了新的文献求助30
刚刚
呆呆的猕猴桃完成签到 ,获得积分10
2秒前
Nal发布了新的文献求助10
4秒前
6秒前
落寞凌波发布了新的文献求助10
9秒前
重要从灵发布了新的文献求助10
10秒前
7298682发布了新的文献求助10
11秒前
黯然完成签到 ,获得积分10
13秒前
13秒前
Bao完成签到 ,获得积分10
16秒前
HH发布了新的文献求助10
17秒前
19秒前
阿卡布拉发布了新的文献求助10
22秒前
yxm完成签到 ,获得积分10
24秒前
31秒前
星辰大海应助亚特兰蒂斯采纳,获得10
31秒前
jnoker完成签到 ,获得积分10
31秒前
凯文完成签到 ,获得积分10
34秒前
Dobby完成签到,获得积分10
34秒前
35秒前
36秒前
wallekt发布了新的文献求助10
40秒前
卧镁铀钳完成签到 ,获得积分10
41秒前
青柠完成签到 ,获得积分10
41秒前
SCI完成签到 ,获得积分10
42秒前
自由水彤发布了新的文献求助10
49秒前
53秒前
雅士白农学家完成签到,获得积分10
54秒前
54秒前
自由水彤完成签到,获得积分10
56秒前
冰激凌完成签到,获得积分10
57秒前
1分钟前
qinzhikai完成签到,获得积分10
1分钟前
毓香谷的春天完成签到 ,获得积分0
1分钟前
1分钟前
戴静旻发布了新的文献求助10
1分钟前
1分钟前
bk发布了新的文献求助10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
angle_alone完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042639
求助须知:如何正确求助?哪些是违规求助? 3580315
关于积分的说明 11383330
捐赠科研通 3308475
什么是DOI,文献DOI怎么找? 1820594
邀请新用户注册赠送积分活动 893427
科研通“疑难数据库(出版商)”最低求助积分说明 815615